A Universal Cloud Composition on the Nightsides of Hot Jupiters

Gao, Peter and Powell, Diana (2021) A Universal Cloud Composition on the Nightsides of Hot Jupiters. The Astrophysical Journal Letters, 918 (1). L7. ISSN 2041-8205

[thumbnail of Gao_2021_ApJL_918_L7.pdf] Text
Gao_2021_ApJL_918_L7.pdf - Published Version

Download (742kB)

Abstract

The day and nightside temperatures of hot Jupiters are diagnostics of heat transport processes in their atmospheres. Recent observations have shown that the nightsides of hot Jupiters are a nearly constant 1100 K for a wide range of equilibrium temperatures (Teq), lower than those predicted by 3D global circulation models. Here we investigate the impact of nightside clouds on the observed nightside temperatures of hot Jupiters using an aerosol microphysics model. We find that silicates dominate the cloud composition, forming an optically thick cloud deck on the nightsides of all hot Jupiters with Teq ≤ 2100 K. The observed nightside temperature is thus controlled by the optical depth profile of the silicate cloud with respect to the temperature–pressure profile. As nightside temperatures increase with Teq, the silicate cloud is pushed upward, forcing observations to probe cooler altitudes. The cloud vertical extent remains fairly constant due to competing impacts of increasing vertical mixing strength with Teq and higher rates of sedimentation at higher altitudes. These effects, combined with the intrinsically subtle increase of the nightside temperature with Teq due to decreasing radiative timescale at higher instellation levels, lead to low, constant nightside photospheric temperatures consistent with observations. Our results suggest a drastic reduction in the day–night temperature contrast when nightside clouds dissipate, with the nightside emission spectra transitioning from featureless to feature-rich. We also predict that cloud absorption features in the nightside emission spectra of hot Jupiters should reach ≥100 ppm, potentially observable with the James Webb Space Telescope.

Item Type: Article
Subjects: Archive Science > Physics and Astronomy
Depositing User: Managing Editor
Date Deposited: 06 May 2023 09:17
Last Modified: 24 May 2024 06:57
URI: http://editor.pacificarchive.com/id/eprint/811

Actions (login required)

View Item
View Item