Double-O-Tube Shield Tunneling-Induced Soil Displacement Considering Burial Depth and Convergence Mode: Transparent Soil Experiment and DEM Simulation

Zeng, Bin and Zhu, Yucong and Ye, Siqiao and Zheng, Yong and He, Lei and Ma, Rui (2022) Double-O-Tube Shield Tunneling-Induced Soil Displacement Considering Burial Depth and Convergence Mode: Transparent Soil Experiment and DEM Simulation. Frontiers in Earth Science, 10. ISSN 2296-6463

[thumbnail of pubmed-zip/versions/1/package-entries/feart-10-925356/feart-10-925356.pdf] Text
pubmed-zip/versions/1/package-entries/feart-10-925356/feart-10-925356.pdf - Published Version

Download (7MB)

Abstract

Double-O-tube shield tunneling technology has gained extensive attention due to saving space and the high cost-effectiveness of the underground construction method. Estimating and predicting DOT shield tunneling-induced soil displacements is essential to prevent damage to nearby aboveground and underground structures in densely populated urban areas. This study develops a device for modeling DOT shield tunneling based on transparent soil technology and image processing technique and investigates soil displacement during the construction process of the DOT shield tunnel, which is considered in the uniform convergence mode (UCM) of soil loss. Meanwhile, the soil displacement under the non-uniform convergence mode (NCM) is analyzed contrastively using a two-dimension particle flow code (PFC2D). The results show that horizontal displacements increase gradually when the shield tail passes the monitoring face, while settlements increase rapidly. The maximum horizontal displacement of the surface and the maximum surface settlement under NCM are slightly larger than those under UCM. A trapezoid-shaped failure pattern of soil is experienced at three tunnel depths. The maximum soil displacement under NCM is 1.93, 2.10, and 2.05 times, respectively, as much as that under UCM, corresponding to H/D (the ratio of the tunnel depth to the tunnel diameter) = 1.0, 1.5, and 2.0. The soil arch effect above DOT tunnels arises as the DOT tunnel depth increases. Moreover, the experimental and numerical results are adopted to assess the validity of the proposed model, which indicates that the proposed model is close to the test results of the disturbance zone on DOT tunnels.

Item Type: Article
Subjects: Archive Science > Geological Science
Depositing User: Managing Editor
Date Deposited: 14 Mar 2023 12:05
Last Modified: 30 Jul 2024 14:09
URI: http://editor.pacificarchive.com/id/eprint/401

Actions (login required)

View Item
View Item