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Abstract 
 

There is a paucity of research on one of the key issues in oil spill detection: the imbalanced training set 
learning problem. This paper performs experiments to show the influence of the imbalanced learning 
problem (ILP) on oil spill detection and devises a novel framework to tackle this problem. Experimental 
results show that an imbalanced training set degenerate the performance of oil spill detection, and our 
proposed framework achieves a better performance based on F-measure. 
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ABBREVIATIONS 
 
P: Positives; N: Negatives; NN: Neural Network; NB: Naive Bayes; SOM: Self-Organizing Map; MTD: 
Mega-Trend Diffusion; ILP: Imbalanced Learning Problem; SAR: Synthetic Aperture Radar; SMOTE: 
Synthetic Minority Oversampling Technique; MWMOTE: Majority Weighted Minority Oversampling 
Technique; MD: Mahalanobis Distance; CMD: Cost-sensitive Mahalanobis Distance; TSd: Standard 
Deviation of Target; BSd: Standard deviation of the background; TPR: True Positive Rate; TNR: True 
Negative Rate. 
 

1 Introduction 
 
Pollution resulting from oil spills in open sea and coastal waters is a major threat to ocean ecosystems. 
Detection and continuous monitoring of oil spills are important components of law enforcement efforts to 
minimize the impact that oil polluting events have on the ecosystem. Previous studies have shown that 
synthetic aperture radar (SAR) is effective in the detection and classification of oil spills. Oil spills appear as 
dark spots in SAR images. However, similar dark spots (“look-alikes”), resulting in misidentification, may 
arise from a range of unrelated meteorological and oceanographic phenomena. How to distinguish oil spills 
from “look-alikes” is definitely a hot topic.  
 
Kubat and Brekke identified four key issues during their development of a machine learning component for 
an oil spill detection system [1,2]. One of the key issues is the imbalanced training set in which there are a 
great many more negative examples (“look-alikes”) than positive examples (oil spills). Oil spill detection is 
an application where the classifier detects a rare, but important, event: “look-alikes” appear much more 
frequently. Imbalanced training set learning, namely designated imbalanced learning problem (ILP), moves 
the decision threshold, or classification boundary, toward the majority class, thereby causing a decrease in 
the generalization ability of machine learning algorithms. ILP is one of the key issues in oil spill detection; 
however, to our knowledge, how it affects detection performance and how to tackle it have not been reported 
in the literature. 
 
This paper focuses on ILP and compares it with existing methods that deal with this problem using an oil 
spill training set. The contributions are two-folds: (1) to confirm that detection performance is affected by an 
imbalanced oil spill training data set and (2) to devise a novel, simple classification method. To descript 
clearly, we use an oil spill as a positive class, a minority class and a “look-alike” as a negative class, a 
majority class. 
 

2 Methodology  
 
2.1 State of art 
 
To deal with ILP, many researchers have studied it mainly from three perspectives: sampling, cost-sensitive 
methods, and algorithm-based methods [3].  
 
2.1.1 Sampling  
 
Sampling methods include many different forms of generating and re-sampling. The main concept of the re-
sampling methods is to balance class distribution by under-sampling the majority class examples, or over-
sampling the minority class examples, or both. Under-sampling removes data from the majority of the class 
examples of the original data set and uses only some of the examples as the training set. Under-sampling, 
although readily providing a simple method for adjusting the balance of training set, may lead to an 
important loss of information. Kim proposed an under-sampling method based on a Self-Organizing Map 
(SOM), which is used in this work for comparison [4]. Over-sampling replicates selected examples of the 
minority class based on some strategies. Synthetic minority oversampling technique (SMOTE) [5] and 
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Mega-Trend Diffusion (MTD) function [6] are intelligent over-sampling methods that generate new 
examples for the minority class. But they ignored the information of majority. After then, majority weighted 
minority oversampling technique (MWMOTE) [7] was proposed to generate synthetic samples by 
combining minority and majority information. They create new examples artificially by interpolating the 
pre-existing minority examples. However, sampling-based method changes the true distribution of samples. 
 
2.1.2 Cost-sensitive methods  
 
Cost-sensitive methods are based on the concept of a cost matrix, which is considered a numerical 
representation of the penalty for misclassification [3]. In this work, the cost of misclassifying an oil spill as a 
“look-alike” is far greater than that of misclassifying a “look-alike” as an oil spill. Consequently, we attach a 
higher penalty to misclassifying an oil spill. This technique, in order to increase the probability of extracting 
an oil spill correctly, moves the decision threshold, or classifier boundary, toward the majority class. Some 
other methods introduce misclassification costs into the weight updating strategy used in AdaBoost [8]. 
 
2.1.3 Algorithm-based methods  
 
The methods, at the algorithm level, include the following: adjusting the classification regularization [9]; 
changing the kernel function or corresponding weights [10]; considering only one class of information by 
ignoring the other classes of information [11,12]; hybrid framework with re-sampling and cost-sensitive 
methods; etc. Zong et al. proposed a weighted extreme learning machine method for imbalance learning 
[13].    
 
2.2 Cost-sensitive Mahalanobis distance classification 
 
Mahalanobis distance (MD), introduced by P. C. Mahalanobis in 1936, is a measure of the distance between 
a point, P, and a distribution, D. It is a multi-dimensional generalization of the idea of measuring the number 
of standard deviations P is from the mean of D [14]. Based on a given distribution, D, the MD of each point 
is computed as the input to the procedure that follows. The classifier performs based on the MD of each data 
point. Both Fiscella and Zhou used this classification in oil spill detection, while the difference of our 
method in this work is at extracting normal group and defining the threshold [15,16].  
 
Cost-sensitive Mahalanobis distance (CMD) classification combines a cost-sensitive method, which takes 
into account a different penalty for misclassifying different classes. The additional process defines a 
threshold that is suitable as a classifier. The framework is introduced in detail in the following sections.  
 
2.2.1 Extracting normal group 
 
Based on a training data set that includes oil spills and “look-alike” examples, we compute the Euclidean 
distance between any two examples. We take the five (or other threshold) nearest neighbor examples as the 
neighborhood for each “look-alike” example. If there is no “look-alike” example in the neighborhood, we 
consider the corresponding “look-alike” example as noisy. Consequently, the noisy “look-alike” examples 
are removed, and the remaining “look-alike” examples are taken as a normal group. Note that how to define 
the neighborhood is based on the application in different cases. Here, it is defined as five. 
 
This technique has a greater probability to separate an oil spill from a “look-alike” and defines a distribution 
that is more representative of “look-alike” examples. Noisy data affects the distribution; thus, it must be 
removed from the normal group.    
  
2.2.2 Computing Mahalanobis distance 
 
Here, we take “look-alikes” as a normal group, which are derived from a distribution space; however, oil 
spills are abnormal examples, which are far removed from the normal group.  
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Assume that X∈Rm*n, where m and n denote the dimension and number of features respectively, is an 

observation set that is derived from the normal group. µµµµ Rm∈ is the mean vector and  S Rm m×∈ is the 

covariance matrix of X. The MD of a point, y Rm∈ , from the normal group is represented as follows:  
 

T 1D( , ) ( ) ( )−= − −X Sy y yµ µµ µµ µµ µ                                                                                               (1) 

 
Based on this representation, all data (including oil spills and “look-alikes”) are changed into another 
measurement scale. Fig. 1 shows the results derived from a trial. The map of an oil spill (red ‘+’ in Fig. 1) is 
far removed from that of a “look-alike” group (blue ‘o’ in Fig. 1).  
 

 
 

Fig. 1. Mahalanobis distance of examples including oil spill and “look-alike” based on extracted 
normal group 

 
2.2.3 Defining decision threshold 
 
We classify test data, based on its MD, by comparing the data to a given threshold. Here, we introduce cost-
sensitivity into defining the threshold. The cost of misclassifying an example is defined based on its 
significance. There are many cost versions in the literature. We define the cost of a class example as one 
divided by the number of class examples, which shows that the total significance of any given class is equal 
to one unit. Then, we search the cost from the mean MD of “look-alikes” to the mean MD of oil spill 
training data. The minimum cost corresponds to the threshold we want to find, i.e. the best boundary to 
segment the two classes. 
 

3 Experiments 
 
3.1 Data set 
 
The dataset used in this study is derived from RADARSAT-1 ScanSAR narrow beam images with a swath 
of 300 km and a spatial resolution of 50 m, and covers vast Pacific and Atlantic coastal areas [17]. The 
dataset used comprises fourteen features of 412 oil spills and “look-alikes”. There are thirty oil spills and 
382 “look-alikes.” Fig. 2 shows examples of oil spill and “look-alike”. By visually discerning the gray tone 
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difference between the dark-spots and the background, we delineated dark-spot boundaries; therefore, we 
need not introduce dark-spot detection.  
 

  
(a)                                                                            (b) 

 
Fig. 2. The dark spots are the examples of (a) “look-alike” (acquired on Sep. 17, 2013, located at 
50°43′ N, 53°25′ W), and (b) oil spill (acquired on Jul. 23, 2009, located at 42°50′ N, 56°38′ W). 

 
Given the dark-spots in pixel-format, features must be extracted as input for the classifiers. For each of the 
dark spots, the following features, proposed in this paper, are computed:  
 
3.1.1 Physical and textural features  
 
(1) Target area A, (2) Target perimeter P, (3) Complexity measure, C=P2/A, and (4) Spreading measure S, 
i.e. the ratio between target width and length.  
 
3.1.2 Geometric features  
 
(1) Standard deviation of target (TSd), (2) Mean intensity of the background area (BM), and (3) Standard 
deviation of the background (BSd).  
 
3.1.3 Contrast with background  
 
(1) Power to mean ratio contrast (Tpm/Bpm) where Bpm=BSd/BM, Tpm=TSd/TM and TM represent the 
mean intensity of the target, (2) ConRaSd =Sd/BSd, (3) ConLa, defined as the ratio between the TM and the 
mean intensity value of a window centered at the region, (4) ConMax, defined as the difference between the 
BM and the lowest value inside the target, (5) ConSm=(Nt/Gt)/(Nb/Gb) where Nt is the number of target 
pixels, Gt is the sum of the gradient values of target pixels, Nb is the number of background window pixels, 
Gb is the sum of the background window gradient values, (6) Maximum gradient value of the dark-spot 
border area, GMax. The gradients are computed by the Sobel operator, (7) Standard deviation of the border 
gradient values, GSd. More details about the data and features of dark-spot refer to Xu et al. [17].    
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3.2 Evaluation metric 
 
To evaluate classifiers on the imbalanced data sets, we use a true positive rate (TPR), a true negative rate 
(TNR), and F metrics. Table 1 shows the corresponding confusion matrix, where Positive denotes oil spill 
and Negative denotes “look-alike”. TPR, TNR and F metric (derived from the version in Sokolova et al.) 
[18] are defined as follows: 
 

TP TP
2TP TN TP+FP TP+FNTPR=          TNR=       F=

TP TPTP+FP TN+FN
TP+FP TP+FN

=
2 Precision Recall

Precision+ Recall

× ×

+

× ×
                (2) 

 
where Precision, Recall are two popular evaluation metrics, and TP, TN, FP, FN are shown in Table 1. 
 

Table 1. Confusion matrix for performance evaluation 
 

P (oil spills = Positives ) N (look-alikes = Negatives) 
TP   (True Positives) FN   (False Negatives) 
FP   (False Positives) TN   (True Negatives) 

 
Intuitively, TPR and TNR are measure of exactness for actually labeled correctly. The F measure metric 
combines exactness and completeness as a measure of classification effectiveness. We use the TPR and TNR 
metrics to illustrate intuitively each method in dealing with an imbalanced training set. We use the F 
measure to evaluate the performance of each classification method.     
 

3.3 Experiments results and discussion 
 
Our experiments include the following three parts. In the first two parts, we carry out the following 
classifications: (1) k-Nearest Neighbor (10-NN); (2) decision tree (C4.5); (3) Naive Bayes (NB); (4) Neural 
Network (NN) with the code in Matlab7.14 where parameters are set optimally; (5) SVM with the library, 
Libsvm, written by Chih-Chung Chang and Chih-Jen Lin; (6) AdaBoost introduced in Pang et al. [9]. We 
employ a three-fold cross-validation technique for performance estimation. In each trial, we divide both the 
oil spill dataset and the “look-alike” dataset into three subsets of equal size, select two subsets of oil spill and 
two subsets of “look-alike” as training set and the remainder as testing set.     
 

3.3.1 First part, combining re-sampling methods into classifier 
  
The first part is to carry out an under-sampling method and two over-sampling methods based on the 
following six classifications that are the population in machine learning: k-NN, SVM, NB, NN, C4.5 and 
AdaBoost methods. We introduce three sampling methods as follows, that is SOM, MTD and MWMOTE. 
 
SOM is an unsupervised algorithm. First, it clusters the original majority class examples. Then, to remove 
the examples which close to the centroid of each cluster by given probability. Consequently, the remainder 
majority class examples will be taken as the most representative examples and as the input to classifier. This 
method reduces the number of majority class examples, but, it can’t change the distribution of boundary 
examples in majority class. We use it to extract, from the training set, the samples that best represent the 
majority of the class samples.  
 
Li et al. [19] proposed the MTD function to deal with the small data set problem for scheduling strategies in 
early flexible manufacturing systems. The main purpose of the MTD function is to reduce the number of 
data in the majority class and generate synthetic examples from the minority class to solve the ILP. The 
MTD function first extracts only the part of the majority examples that is most representative of its category. 
Then, the MTD function generates synthetic examples based on a linear combination randomly selected 
from among the minority class examples. Consequently, the number of examples between the majority and 
minority classes is transferred to a more balanced level.  
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MWMOTE first identifies the hard-to-learn informative minority class examples and assigns them weights 
according to their Euclidean distance from the nearest majority class samples. Then, using a clustering 
approach, it generates synthetic samples from the weighted informative minority class examples. In such a 
way, all the generated examples lie inside some minority class cluster. 
 
We carry out the classifiers aforementioned and Table 2 shows the results. Numbers 1-6 in Table 2 show the 
results of six classifiers on the observed original training data. The TPR values are the same for all six, but 
the TNR values are different. For the F measure, C4.5 and AdaBoost classifications exhibit the best results. 
SVM shows a somewhat poorer performance. Numbers 7-24 show the results based on the three sampling 
methods. For SOM-based under-sampling, the performance of C4.5 and AdaBoost are invariant with that 
based on the original training data. Due to a reduced majority class, the other four classifiers show worse 
performance; especially for k-NN, performance declines severely. Therefore, this under-sampling method 
does not affect the C4.5 and AdaBoost classifiers, and it is unsuitable for the other four classifiers.  
 

Table 2. Performance of classification 
 

No Methods TPR TNR F No Methods TPR TNR F 
1 KNN 0.77 0.82 0.43 18 AdaBoost + MTD 0.87 0.46 0.30 
2 SVM 0.77 0.94 0.62 19 KNN + MWMOTE 0.77 0.81 0.43 
3 NB 0.77 0.79 0.41 20 SVM + MWMOTE 0.77 0.92 0.59 
4 NN 0.77 0.80 0.42 21 NB + MWMOTE 0.77 0.74 0.38 
5 C4.5 0.77 0.95 0.64 22 NN + MWMOTE 0.77 0.77 0.40 
6 AdaBoost 0.77 0.95 0.64 23 C4.5 + MWMOTE 0.77 0.93 0.61 
7 KNN + SOM 0.40 0.66 0.18 24 AdaBoost + MWMOTE 0.77 0.95 0.64 
8 SVM + SOM 0.73 0.72 0.35 25 KNN + cost-sensitive 0.83 0.80 0.44 
9 NB + SOM 0.77 0.79 0.41 26 SVM + cost-sensitive 0.87 0.92 0.61 
10 NN + SOM 0.77 0.73 0.37 27 NB + cost-sensitive 0.83 0.76 0.42 
11 C4.5 + SOM 0.77 0.95 0.64 28 NN + cost-sensitive 0.83 0.78 0.43 
12 AdaBoost + SOM 0.77 0.95 0.64 29 C4.5 + cost-sensitive 0.87 0.92 0.61 
13 KNN + MTD 0.90 0.47 0.32 30 AdaBoost + cost-sensitive 0.87 0.92 0.61 
14 SVM + MTD 0.97 0.19 0.28 31 One class SVM(negative) 0.40 0.95 0.40 
15 NB + MTD 0.90 0.49 0.33 32 One class SVM(positive) 0.97 0.19 0.28 
16 NN + MTD 0.93 0.41 0.32 33 Extreme machine learning 0.77 0.75 0.38 
17 C4.5 + MTD 0.87 0.46 0.30 34 Cost-sensitive MD 0.97 0.91 0.67 

 
For MTD-based over-sampling, as expected, the TPR of all classifiers increase; however, their TNRs 
decrease dramatically. Consequently, the F measures of these classifiers decrease in different degrees. By 
removing some majority examples and generating some synthetic examples based on minority examples, 
this over-sampling method makes the decision threshold move toward a majority; thus, this over-sampling 
method increases the TPR, while adding some noisy data to the training set.  
 
WMWOTE tackles this problem, and generates synthetic examples based on only the minority examples that 
pre-removed noisy data. However, the TPRs of WMWOTE-based classifiers are invariant, and their TNRs 
decrease. The degree of the decrease in their TNRs is less than that of the MTD-based classifiers.  
 
These experimental results show that imbalanced oil spill learning is affected, more or less. To increase the 
probability of correctly classifying an oil spill, re-sampling methods move the decision threshold toward a 
majority class. But, at the same time, the procedure decreases the probability of classifying “look-alikes.” If 
re-sampling processing reduces the total cost of mis-classification, the processing is feasible. 
 

3.3.2 Second part, combining cost-sensitive into classifier  
 
Secondly, to show the influence of cost-sensitive processing for ILP on an oil spill training set, these 
classifiers are implemented with a cost-sensitive method. We add a cost matrix to the classifier’s initial 
input. The same as previously done in Section 3, the costs of an oil spill and a “look-alike” are set at one 
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divided by the number of oil spill examples and one divided by the number of “look-alike” examples, 
respectively. In other words, we assume that the total importance of one class is equal to that of another. It 
seems reasonable that, the fewer the number of examples in a class, the greater the importance of each 
example.   
 
For the cost-sensitive classifiers, experimental results show the similar case in MTD-Based methods that the 
increase of TPR is at the expense of its TNR. Also, the F measures of these classifiers varied in different 
degrees. This case illustrates that cost-sensitivity must be taken into account in imbalanced oil spill learning. 
Numbers 25-30 in Table 2 show the best performance for the cost of an oil spill, in the range 1 to 12.7, 
which maximum upper bound is an imbalanced ratio equal to the number of “look-alike” examples divided 
by the number of oil spill examples. 
 

3.3.3 Third part, other algorithms for ILP  
 
Thirdly, the following other algorithms are carried out for ILP: one-class SVM, extreme machine learning, 
and our proposed framework. The significance of performance differences among classifiers is statistically 
tested. One-class SVM takes only one class of information (oil spill or “look-alike”) as classifier input, while 
ignoring other classes of information. We performed this classifier with two strategies that use as input oil 
spill and “look-alike,” respectively. The results shown in Numbers 31-32 in Table 2, demonstrate that the 
correct ratio of the class that is taken as classifier input is much greater than that of another class that is 
ignored in the training procedure. The F measure of the two strategies is low. Extreme machine learning 
performance shown in Number 33 is poor.  
 
Compared with all the above mentioned classifiers including Sampling, Cost-sensitive, algrithm-based 
methods, our proposed framework, whose results showed in Number 34 in Table 2, achieves the best 
performance based on F-measure. On the oil spill data set, the performance of Sampling and Cost-sensitive 
classification is not superior to that based on original classification. The experiment on Cost-sensitive MD 
showed that most oil spills are detected correctly, and few part of “look-alike” examples are classified as oil 
spills, mainly because the higher cost of an oil spill pushes the decision threshold toward the majority class.   
 

4 Conclusion 
 
In this paper, we performed many classifications to study oil spill detection using imbalanced learning 
methods. We analyzed the influence an imbalanced training set has in detecting oil spills. We drew the 
conclusion that we must consider oil spill importance as an additional process in classification. Furthermore, 
regarding imbalanced oil spill learning, we devised a novel framework that achieves its best performance 
based on and F measures. However, due to the limitation of the oil spill training data, we didn’t conduct 
more experiments to further identify the advantages of our proposed framework. 
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