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Abstract 

The premise in experiments with repeated measures is that observations taken in the same experimental unit are 
correlated and that correlations decrease proportionally to the increase in the distance between measurements in 
time or space. Nevertheless, these experiments are often analyzed as if the correlations between the repeated 
measures were constant or using methods that only consider correlations different, which may impact on the 
rejection rate of the null hypothesis, and ultimately type I error rate and statistical power. In this context, this 
study investigated the application of mixed linear models with different assumptions about the covariance matrix 
in data sets from simulated experiments with repeated measures. 84 scenarios that varied in terms of the 
covariance matrix pattern (14 structures), number of repeated measurements (4 and 8) and sample size (4, 8 and 
12) were evaluated. 10,000 data sets were simulated for each scenario based on a multivariate normal 
distribution and were subsequently analyzed using mixed linear models. Type I error rate and statistical power 
for the hypothesis test of the interaction between treatments and repeated measures were estimated as the 
proportion of p values less than or equal to 0.01 or 0.05 out of a total of 10,000 tests for each scenario. The 
models were also evaluated for their ability to fit the data using Bayesian Information Criteria (BIC). Thus, the 
frequency with which the covariance structures were chosen by the selection criteria was computed. Results 
indicate that the assumption chosen most frequently by the information criteria resulted from the specified 
covariance structure that corresponded to the empirical covariance structure of the analyzed data sets, 
particularly for those with larger number of repeated measures and sample sizes. Results also indicate that the 
use of covariance models that do not recognize heterogeneous correlations between repeated measures can 
inflate type I error or reduce it to very conservative levels, which may affect the conclusion of agricultural 
experiments. For a 5% significance level, type I error bias was greater than 2α, while for 1% significance level, 
bias was over 5α. In addition, the statistical power was reduced when the assumption about the covariance 
matrix of the data sets did not correspond to the empirical covariance structure, particularly for those data sets 
with a smaller sample size. 

Keywords: covariance models, F test, robustness, correlated data, type I error, statistical power, information 
criteria, simulation 

1. Introduction 

Correlated observations are common in experiments involving biological and physical components such as in 
agricultural trials. Correlated structures can often arise in studies in which observations are structured in groups, 
in which observations belonging to the same group tend to present a greater degree of correlation than those 
from different groups. For example, repeated measurements in the same experimental unit inducing temporal or 
spatial correlations, and random effects common to several experimental units. In the case of repeated measures 
experiments, which are conducted to evaluate changes in time (days, months, years) or space (soil samples at 
different depths) and the effect of treatments on these changes, the experimental units need to be observed at two 
or more-time intervals or spaces during the conduct of the experiment. Thus, observations in the same 
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experimental unit (plot) tend to be not only proportionally correlated, but also observations that are closer in time 
or space tend to be more correlated than those that are further away (Condorelli et al., 2018; Gbur et al., 2012; Li 
et al., 2016; Yang & Juskiw, 2011). 

The univariate analysis of variance for repeated measures (RANOVA) based on traditional linear models allied 
to least squares can restrict the analysis of data from experiments with repeated measures (Kowalchuck, et al, 
2004). The structure of errors can be more complex than those imposed by the sphericity assumption. The 
sphericity assumption is evaluated in the form of compound symmetry, a condition in which all variances of the 
repeated measures are equal and all pairs of correlations between them are also equal. Compound symmetry is a 
sufficient but not necessary condition for validating sphericity and therefore not always satisfied. Although not 
necessary, the lack of compound symmetry indicates that sphericity is unlikely. Although relatively robust 
against violations of normality, particularly when the sample size is large enough as proposed by the central limit 
theorem, the application of the RANOVA approach to data sets whose observations were collected with some 
kind of dependency structure more complex than that of homogeneous variances and homogeneous correlations 
can lead to loss of robustness of these procedures due to biased estimates of standard errors (Bakdash & 
Marusich, 2017; Haverkamp & Beauducel, 2017; Marcin et al., 2015).  

Robust estimators are important to ensure that estimates from repeated measures experiments are reasonably 
efficient and asymptotically unbiased (bias tending to zero as the sample size approaches infinity). The concept 
of efficiency refers to the sampling variability of an estimator. The variance of an estimator measures the degree 
of spread of the estimates and its information is inversely proportional to the precision, because the smaller the 
variance of the estimates, the greater the precision of the information. The degree of displacement of this 
information is given by the bias, so that the smaller the value of the bias, the greater the accuracy of the 
information. An estimator will be efficient if the variance is as small as possible. 

Although the RANOVA approach recognizes the existence of correlations between repeated measures, it ignores 
the existence of heterogeneity in the correlations by imposing a compound symmetry structure, in which pairs of 
observations have the same correlation regardless of how far apart they are in time or space. Thus, the risk of 
obtaining incorrect standard deviations for hypothesis tests and for comparisons between means of different 
times increases. When the sphericity assumption is violated, F-test calculations can become skewed, which can 
result in inflated tests, and a greater likelihood that the researcher will conclude that a result has statistical 
significance, when in fact it happened by chance. The consequence of this violation is positive bias or more 
liberal tests (the probability of a false positive exceeds that established by the researcher through the significance 
level α). Although adjustments can be made to tests to account for correlations dependent on repeated measures, 
such corrections are often inadequate (Yang & Juskiw, 2011). 

Another method that has been widely used when RANOVA’s assumptions are not supported is the multivariate 
analysis of variance (MANOVA) (Vasey & Thayer, 1987). Despite allowing heterogeneous correlations, the 
assumption about the structure of errors can lead to reduced statistical power, since the only assumed covariance 
structure is one in which all correlations are distinct, resulting in a greater number of estimated parameters 
(Oberfeld & Franke, 2013). 

Assumptions about the structure of variance and covariance of errors in repeated measures experiments that are 
either very simple, as in the RANOVA approach, or very complex, as in the MANOVA approach, can affect the 
type I error rate and statistical power (Dixon, 2008). Furthermore, due to the estimation method involved 
(ordinary least squares) for estimating fixed effects, the ability to deal with missing data in both approaches is 
quite limited. If a repeated measurement is missing for an experimental unit, the remaining observations for that 
experimental unit must also be excluded, causing more information to be lost from the dataset. Therefore, the 
RANOVA and MANOVA approaches are not recommended for unbalanced data sets, which are frequent in 
agricultural experimentation (Casella & Berger, 2002). 

Despite the historical importance for the development of the analysis of repeated measures experiments, the 
previous methods have disadvantages that have driven the development of other methods more suitable for 
situations in which data are collected with some dependency structure. Thus, the previously mentioned 
approaches for experiments with repeated measures have been gradually replaced by another one capable of 
incorporating different structures of covariance between observations directly in the model. Advances in 
statistical procedures in the last decades, particularly in the computational area, have been of great interest to 
agricultural research, as it has provided more suitable approaches for experiments with repeated measures, with 
random effects common to several experimental units as in block designs, with subdivided plots, complex 
bioinformatics data such as genetic and molecular studies, in addition to other situations with multiple sources of 
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variation, resulting in the grouping of observations with some degree of correlation (Zhang et al., 2019). 
Currently, the recommendation has been to use mixed linear models combined with generalized least squares and 
restricted maximum likelihood estimators for the analysis of repeated measures experiments, allowing greater 
flexibility for modeling different covariance structures (Li, 2017). 

Mixed models extend traditional linear models allied to ordinary least squares through more flexible and 
complex assumptions about errors, allowing the addition of other random effects, properly considering 
time-dependent correlations for repeated measurements in experimental units. The MLM approach allows the 
error to be partitioned between observations and group components, which take the form of additional residual 
terms, each with its own variance to be estimated. Furthermore, due to maximum likelihood estimation processes, 
mixed models deal more efficiently with unbalanced data. Still, an important attribute of mixed linear models is 
the existence of two sample sizes: the number of groups (N) and the number of observations per group (n). In the 
case of experiments involving repeated measurements, the number of measurements in time or space and the 
number of experimental units taken in each repeated measurement. Previous research shows that the number of 
groups is more important than the number of observations per group for maintaining the consistency of the 
estimators (Duarte & Vencovsky, 2001). On the other hand, the determination of an adequate n is fundamental to 
obtain the desired statistical power. Many studies lack sufficient power to make correct decisions or detect an 
effect when it exists (Allegue et al., 2017; Gezan & Carvalho, 2018). 

Despite the intense research and the increase in popularity due to the availability in many free statistical 
programs such as R (R Core Team, 2015) and Python (Rossum & Drake, 2009) and companies such as SAS 
(SAS Institute Inc., 2015), the application of mixed linear models in the agricultural sciences is still quite timid, 
particularly for non-statistical researchers. The flexibility with which mixed linear models stand out from 
traditional linear models is the same that makes them more complex, and consequently less used. Furthermore, 
the related terminology is quite heterogeneous and confusing. Another problem that makes it difficult to use 
mixed models is the lack of a definitive method to determine the best variance-covariance structure (Demidenko, 
2013). 

Gbur et al. (2012) further argue that parsimony and meaning also need to be considered when selecting 
covariance structures. The decision is often based on comparing models with different covariance structures 
using the likelihood ratio test or information criteria such as AIC and BIC. Previous work suggests that optimal 
control of the type I error rate while maintaining a satisfactory level of statistical power to detect possible real 
differences in experiments would result from the specified covariance structure that corresponds to the empirical 
covariance structure of the dataset (Duarte & Vencovsky, 2001). However, other works suggest this control may 
not necessarily result from the combination between the specified covariance model and the empirical 
covariance matrix of the data, requiring investigation for different covariance models (Piepho et al., 2004). 

One way to evaluate the effect of different assumptions on the covariance matrix in experiments with repeated 
measures is through simulations of a data set with certain characteristics that allow highlighting the effects of 
applying certain mixed models to specific covariance scenarios. For example, research reveals that the 
effectiveness of mixed linear models in capturing the variance and covariance structure will depend on data 
characteristics, estimation procedures, patterns of variance and covariance (Guerin & Stroup, 2000). Therefore, 
simulation studies are necessary to evaluate the quality of the estimators from mixed linear models considering 
different experimental scenarios to enable researchers in the agricultural and biological areas to obtain more 
precise and accurate results from the experiments (Gueorguieva & Krystal, 2004; Stroup, 2013). 

In this context, it was hypothesized that the use of mixed linear models with inadequate assumptions about the 
covariance structure in experiments with repeated measures can affect the statistical power of the hypothesis 
tests test and change the null hypothesis rejection rate to very conservative or very conservative levels or very 
liberal, affecting the conclusion of the experiments. Thus, the present study had as general objective the 
application, evaluation, and selection of mixed linear models with different assumptions about the covariance 
matrix between repeated measures in data sets from simulated experiments whose covariance matrices were 
adjusted to different patterns. It was hypothesized that the covariance model chosen from the information criteria 
and the ideal type I error control corresponds to the empirical covariance structure of the data. 

Structured correlation patterns reflect special assumptions about correlations between repeated measures in case 
they tend to decrease over time or space. Assumptions about the actual covariance structure of the data introduce 
the risk of choosing a pattern that is too simple, which could inflate the type I error rate, or too complex, which 
could lead to a loss of statistical power. Despite the studies with mixed linear models, the results are still not 
conclusive about the most suitable model for the different experimental scenarios, and about the consequence of 
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not considering the structure that provides the best fit in the data analysis. Many of the studies available in the 
literature are specific to a few scenarios outside the agricultural context, making it difficult to apply more 
adequate linear mixed models by non-statistical researchers, since the application of mixed models requires the 
specification of parameters beyond those standards of statistical programs. 

In this context, the hypotheses of the present study were: (1) Inadequate assumptions about the covariance 
structure of repeated measures experiments can alter the type I error rate, altering the conclusion about fixed 
effects. (2) Specification of very simple covariance structures for data sets with more complex structures can 
lead to an increase in the type I error rate in inferences about fixed effects. (3) Incorrect specification of very 
complex covariance structures for repeated measures can lead to loss of statistical power. (4) Specification of 
covariance structures with intermediate complexities, such as the AR (1) or TOEP pattern, can provide a better 
relationship between the null hypothesis rejection rate and statistical power. (5) An ideal type I error rate control 
results from the specified covariance structure that corresponds to the empirical covariance structure of the data 
set. (6) The number of repeated measures influences the rejection rate of the null hypothesis, as a greater number 
of repeated means a greater number of parameters to be estimated, and, therefore, a reduction in statistical power. 
(7) A greater number of repeated measurements requires a greater number of repetitions to reach adequate levels 
of statistical power.  

To address the previous hypotheses, the present study had as its general objective the application and evaluation 
of mixed linear models in data sets from repeated measures experiments simulated with different experimental 
scenarios that varied in terms of the covariance structure of random effects, the number of repeated measures, 
and the sample size. The specific objective was to evaluate the effect of specifying parametric structures of 
variance and covariance matrices (matrix ۵) on the fit of mixed models, on the estimation of type I error through 
hypothesis tests on fixed effects, and on statistical power in simulated repeated measures experiments. 

2. Materials and Methods 

2.1 Simulation of Experimental Scenarios 

To enable the evaluation of the effect of using mixed linear models with different assumptions about the 
covariance matrix in experiments with repeated measures, a series of data sets from simulated experiments based 
on random samples of a multivariate normal distribution were generated. Data sets were generated so that they 
had different patterns of covariance between repeated measures, different numbers of repeated measures, and 
different sample sizes. 

The simulated experiments consisted of a completely randomized design with 2 treatments, 4 or 8 repeated 
measures, 4, 8 and 12 replicates per treatment and 14 patterns of covariance between repeated measures. For 
each scenario evaluated, 10000 data sets were generated that were later analyzed with mixed linear models with 
different assumptions about the empirical covariance matrix of the data and evaluated for the type I error rate and 
the statistical power of the hypothesis tests for the interaction between treatment and repeated measures, and the 
fit of the model to the data through the BIC information criteria. 

2.2 Specification of the Linear Mixed Model 

The formulation of the mixed linear model is shown below: ܆ = ܡβ + ܈v + ϵ                                     (1) 

where, ܡ is the response vector, ܆ is the fixed effects design matrix,  is the unknown fixed effects vector to be 
estimated, ܈ is the random effects design matrix, ܞ is the unknown random effects vector, and  the random error 
vector. 

The expectation of y was expressed by: 

E(ܡ) = E(܆ + ܞ܈ + ϵ) = ܆β                                 (2) ܡ ∼ N(܆β, ܀ + ′܈۵܈)                                    (3) 

 

The random effects v and the errors ϵ were assumed to have a multivariate normal distribution with a mean of 
zero, are independent, with matrices of variances and covariances ۵ (q × q) and ܀ (n × n), respectively.  

Var(v) = ۵                                       (4) 

Var(ϵ) = (5)                                       ܀ 

For repeated measures experiments, the formulation of the mixed linear model was given by: 
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yi = ܑ܆β + ܑ܈vi + ϵi                                  (6) 

where, y is the response vector (ni × 1) for experimental unit i, ܆i is the incidence matrix for fixed effects (ni × p) 
for experimental unit i, and β is the coefficient vector for fixed effects (p × 1), ܈i is the incidence matrix for 
random effects (ni × q) for experimental unit i, vi is the random effects vector (q × 1), and ϵi is the error vector 
for experimental unit i with mean 0 and covariance ܀i. Also, ni is the number of repeated measurements on 
experimental unit i and N is the number of experimental units. While β is the same for all experimental units, vi 
can vary depending on the subject.  

2.3 Covariance Structures 

There are two main issues in the analysis of repeated measures data: the construction of an adequate model for 
the mean and the selection of an adequate and parsimonious model for the covariance structure of the repeated 
measures. Intraclass correlation, or correlation between observations taken repeatedly in the same experimental 
unit (plot), generally follows distinct patterns that allow designing a variety of covariance patterns to reflect such 
relationships (Condorelli et al., 2018; Gbur et al., 2012; Li et al., 2016). 

A model with an adequate covariance structure is essential for the researcher to reach accurate conclusions from 
the agricultural trial with repeated measures. If the correlation between repeated measures for experimental units 
is ignored using a very simple covariance model, the type I error rate for hypothesis tests on fixed effects 
increases. Research shows that statistical inference from repeated measures experiments can be seriously 
impaired by the inappropriate choice of covariance models (Kenward & Roger, 1997; Keselman et al., 2000). 

Some of the most common covariance patterns for applications in agricultural experiments include: the diagonal 
pattern with zero correlations with homogeneous variances, known as identity (I), and with heterogeneous 
variances, known as variance components (VC), in which the covariances are null. 

RI = ൦σ2    
 σ2   
  σ2  
   σ2

൪ 
RCV = ێێێۏ

σ1ۍ
2    

 σ2
2   

  σ3
2  

   σ4
ۑۑۑے2
ې
 

r = ൦1    
 1   
  1  
   1

൪ 
Another covariance pattern is the compound symmetry model with homogeneous variances (CS) and with 
heterogeneous variances (CSH). The CS pattern is the simplest, non-trivial pattern, assuming constant 
correlation between repeated measures. Such correlation is known as intragroup correlation. The variance and 
covariance matrix for the CS and CSH patterns, and the correlation matrix are presented below: 

RCS = ێێۏ
σ2ۍ ρσ2 ρσ2 ρσ2

 σ2 ρσ2 ρσ2

  σ2 ρσ2

   σ2 ۑۑے
ې
 

RCSH = ێێۏ
σ1ۍێ

2 ρσ1σ2 ρσ1σ3 ρσ1σ4

 σ2
2 ρσ2σ3 ρσ2σ4

  σ3
2 ρσ3σ4

   σ4
2 ۑۑے
ېۑ
 

r = ൦1 ρ ρ ρ
 1 ρ ρ
  1 ρ
   1

൪ 
For those data sets from repeated measures experiments that follow a pattern of constant correlations for all 
points in time or space, the CS pattern can produce statistically efficient and consistent estimates of the 
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parameters. However, the error structure tends to be often more complex than those imposed by previous 
standards, particularly for repeated measures experiments, where observations in the same experimental unit tend 
not only to be correlated, but correlations also tend to decrease with age. increasing distance between points of 
time or space. 

Other patterns based on correlation rules have been developed for the context of repeated measures. The 
unstructured residual covariance (UN) pattern represents the opposite extreme of the simpler earlier patterns. In 
it, all covariances are arbitrary, allowing not only unequal variances, but also unequal covariances between 
observations. In the unstructured pattern (UN), the assumption is that all correlations are different for all 
elements of the variance and covariance matrix. The variance and covariance matrix for the UN model, and the 
correlation matrix are presented below: 

RUN = ێێۏ
σ2ۍێ ρ12σ

2 ρ13σ
2 ρ14σ

2

 σ2 ρ23σ
2 ρ24σ

2

  σ2 ρ34σ
2

   σ2 ۑۑے
ېۑ
 

RUNH = ێێۏ
σ1ۍێ

2 ρ12σ1
σ2 ρ13σ1σ3 ρ14σ1

σ4

 σ2
2 ρ23σ2

σ3 ρ24σ2
σ4

  σ3
2 ρ34σ3σ4

   σ4
2 ۑۑے

ېۑ
 

rUN = ێێۏ
1ۍ ρ12 ρ13 ρ14

 1 ρ23 ρ24

  1 ρ34

   1 ۑۑے
ې
 

Despite its flexibility, the UN covariance pattern requires the estimation of many parameters. An unstructured 
correlation pattern requires the estimation of p (p – 1)/2 distinct correlations, with p being the number of 
repeated measurements. 

For situations where the data are organized in sequence such as repeated measures experiments, several 
additional residual variance and covariance patterns are available with intermediate complexities between the 
composite symmetry pattern imposed by ANOVA for repeated measures and the unstructured pattern. In this 
case, it is important to consider whether the intervals between repeated measurements are equal or not. 

2.2.1 Patterns for Equal Time Intervals 

For experiments with equal intervals, one can consider autoregressive (AR) patterns. Among the autoregressive 
models, those of the first order are perhaps the most used to model the pattern of variance and residual 
covariance in experiments with repeated measures. In them, the correlation between observations from adjacent 
levels is ρ, between observations separated by two levels ρ2, and so on. The first-order autoregressive pattern can 
assume homogeneous AR (1) or heterogeneous ARH (1) variances between all time points, plus a decreasing 
intragroup correlation effect ρj (j = 1, ..., p − 1). This pattern is called first-order because it only depends on the 
residual term at the previous time point. Given this assumption, this pattern of covariances requires the 
specification of only two parameters, σ2 and ρ. Given its simplicity, the autoregressive pattern is used when 
observations are evenly spaced, and the intragroup correlation does not change abruptly in time or space. 

The variance and covariance matrices for the AR (1) and ARH (1) pattern, and the correlation matrix are 
presented below: 

RAR (1) = ێێۏ
σ2ۍێ ρ1  σ

2
ρ2σ

2
ρ3σ

2

 σ2 ρ1σ
22

ρ2σ
2

  σ2 ρ1σ
2

   σ2 ۑۑے
ېۑ
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RARH (1) = ێێۏ
σ1ۍێ

2 ρ1σ1σ2 ρ2σ1σ3 ρ3σ1σ4

 σ2
2 ρ1σ2σ3 ρ2σ2σ4

  σ3
2 ρ1σ3σ4

   σ4
2 ۑۑے

ېۑ
 

r = ێێۏ
1ۍ  ρ1 ρ2 ρ3 
 1 ρ1 ρ2 
  1 ρ1 
   1 ۑۑے

ې
 

For example, the correlation matrix for a first-order autoregressive pattern with ρ = 0.6 and homogeneous 
variance is given by: 

r = ൦1 0.6 0.36 0.216
 1 0.6 0.36
  1 0.6
    1

൪ 
However, this pattern may not be flexible enough to reflect heterogeneity over time in repeated measures 
experiments. Therefore, researchers have also developed more refined autoregressive patterns to address more 
complex patterns of residual covariance. 

Another important covariance pattern is called Toeplitz (TOEP), in which the correlation between observations 
at adjacent factor levels is ρd, where d represents the unit of distance between two repeated measurements. This 
model is slightly less restrictive than an autoregressive model. 

In this case, n parameters of variance and covariance are specified, one for constant variance and n − 1 for 
correlations. This structure resembles the AR (1) pattern, except the correlation specification is ρd instead of ρd, 
where d represents the unit of distance between two repeated observations. When compared to the AR (1) 
structure, the TOEP model is more flexible given the specification of ρd and, therefore, this pattern can be used 
to capture more complex patterns of variance. Also, TOEP allows specifying n variance parameters, while AR (1) 
has only 2. 

The variance and covariance matrices for the TEOP and TOEPH standard, and the correlation matrix are 
presented below: 

RTOEP = ێێۏ
σ2ۍێ σ2ρ1 σ2ρ2 σ2ρ3

 σ2 σ2ρ1 σ2ρ2

  σ2 σ2ρ1

   σ2 ۑۑے
ېۑ
  

RTOEPH = ێێۏ
σ1ۍێ

2 σ1σ2ρ1 σ1σ3ρ2 σ1σ4ρ3

 σ2
2 σ2σ3ρ1 σ2σ4ρ2

  σ3
2 σ3σ4ρ1

   σ4
2 ۑۑے

ېۑ
  

r = ێێۏ
1ۍ ρ1 ρ2 ρ3

 1 ρ1 ρ2

  1 ρ1

   1 ۑۑے
ې
  

The correlation matrix for a TOEP standard with ρ1 = 0.7, ρ2 = 0.5 and ρ3 = 0.3 is given by: 

R = ൦1 0.7 0.5 0.3
 1 0.7 0.5
  1 0.7
   1

൪  

The variance and covariance matrices for the TEOP (2) and TOEPH (2) standard, and the correlation matrix are 
presented below: 
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RTOEP (2) = ێێۏ
σ2ۍێ σ2ρ1 0 0

 σ2 σ2ρ1 0

  σ2 σ2ρ1

   σ2 ۑۑے
ېۑ
 

RTOEPH (2) = ێێۏ
σ1ۍێ

2 σ1σ2ρ1 0 0

 σ2
2 σ2σ3ρ1 0

  σ3
2 σ3σ4ρ1

   σ4
2 ۑۑے

ېۑ
 

r = ێێۏ
1ۍ  ρ1 0 0
 1 ρ1 0
  1 ρ1

   1 ۑۑے
ې
 

The correlation matrix for a TOEP (2) standard with ρ1 = 0.7 is given by: 

R	= ൦1 0.7 0 0
 1 0.7 0
  1 0.7
   1

൪ 
The variance and covariance matrices for the TOEP (3) and TOEPH (3) standard, and the correlation matrix are 
presented below: 

RTOEP (3) = ێێۏ
σ2ۍێ σ2ρ1 σ2ρ2 0

 σ2 σ2ρ1 σ2ρ2

  σ2 σ2ρ1

   σ2 ۑۑے
ېۑ
 

RTOEPH (3) = ێێۏ
σ1ۍێ

2 σ1σ2ρ1 σ1σ3ρ2 0

 σ2
2 σ2σ3ρ1 σ2σ4ρ2

  σ3
2 σ3σ4ρ1

   σ4
2 ۑۑے

ېۑ
 

r = ێێۏ
1ۍ  ρ1 ρ2 0 
 1  ρ1 ρ2

  1 ρ1 
   1 ۑۑے

ې
 

The correlation matrix for a TOEP (3) standard with ρ1 = 0.7, ρ2 = 0.5 is given by: 

R = ൦1 0.7 0.5 0
 1 0.7 0.5
  1 0.7
   1

൪ 
The covariance structure in repeated measures experiments can be complex, but it is generally assumed that 
repeated measures within experimental units (subjects) are correlated and between independent experimental units. 
Thus, generally, the marginal variance structure is a diagonal block matrix, making it easy to specify different 
structures for each block. In the case where covariance parameters are expected to change with one-factor groups 
between subjects, different sets of parameters for the R and G matrices can be specified for each group. As a result, 
a set of covariance parameters are produced that differ for each level of the variable group. 

The patterns of the covariance matrix between the repeated measures for the simulations in this study consisted 
of 14 structures: I, CS, AR (1), TOEP, TOEP (2), TOEP (3) and BANDED (3), and their respective versions with 
heterogeneous variances: VC, SCH, ARH (1), TOEPH, TOEPH (2), TOEPH (3), BANDH (3). Furthermore, the 
size of the  matrices varied between 4 × 4 or 8 × 8, corresponding to the scenario with 4 and 8 repeated 
measures in time or space. For each simulation scenario, a vector of multivariate random normal deviations with 
mean 0 and covariance matrix  was generated. For each simulation, the vectors were of the following sizes: (32, 
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1), (64, 1), (96, 1) (160, 1) and (192, 1), and were generated with the multivariate_normal function (μ, ), where 
μ is the vector of means, which has been adjusted to μ = [0 0 0 0] or μ = [0 0 0 0 0 0 0] depending on the number 
of repeated measures, and  is the covariance matrix of the means, which varied depending on the covariance 
patterns being evaluated. 

For matrices CS, CSH, AR (1) and ARH (1), ρ was set to 0.75. For the TOEP and TOEPH matrices, ρ1, ρ2 and ρ3 
were 0.8, 0.6 and 0.4, respectively. For the TOEP (2) and TOEPH (2) matrices, ρ1 and ρ2 were 0.8 and 0.6, 
respectively. For the TOEP (3) and TOEPH (3) matrices, ρ1 was set to 0.8. For the BAND (3) and BANDH (3) 
matrices, ρ1 was set to 0.8. For the construction of the previous matrices, two matrices of size (4 × 4) and (8 × 8) 
with all elements equal to 1 served as a model, from which repetition structures were used to perform iterations 
on the elements of the matrices in order to obtain the desired structure. 

The identity patterns, variance components and compound symmetry were included in the study as a reference 
for what would be the data set with the ideal pattern for the assumptions required by the traditional ANOVA and 
ANOVA for repeated measures. The simulations were obtained through Python code written mostly with Numpy, 
Pandas and Scipy packages. Subsequently, all data sets were submitted to statistical analysis using a code in SAS 
mostly through the Glimmix procedure for analysis of mixed linear models with different assumptions about the 
pattern of covariance between repeated measures. 

For each simulated scenario, 10,000 data sets were generated and analyzed using mixed linear models with the 
accommodation of the following covariance patterns: VC, CS, CSH, AR (1), ARH (1), TOEP, TOEPH, TOEP (2), 
TOEPH (2), TOEP (3) and TOEPH (3). 

2.4 Specification of the Effects of Main Factors and Interaction in Simulations 

From the simulated random deviation vectors for each scenario considered, models of experiments with repeated 
measures were created following the model specified in 2.2 with a factor between subjects (treatment) with two 
levels, an intra-subject factor (time) with 4 or 8 levels and a treatment × time interaction. To determine the size 
of the effects, the concept of minimum detectable difference (MDD) and the effect pattern (EP) was considered. 
Minimum detectable difference is the difference between the largest and smallest effect associated with a factor. 
This difference represents the smallest difference between two levels of a factor, and the real effect used in the 
simulation was given by the equation: 

Effect = MDD × EP                                   (7) 

In all simulations with 4 repeated measures, the default factor of repeated measures was +0.5, +0.125, -0.125, 
-0.5, while for simulations with 8 repeated measures, the default was +0.5, +0.125, 0, -0.125, -0.250, -0.35, -0.45 
-0.5. The minimum detectable difference was set to 10. 

2.5 Determining the Type I Error Rate and Power of Hypothesis Testing 

For the study of the type I error rate of different mixed models (assessment of the rejection rate of H0 when it is 
false), the main effects pattern was +0.5 and +0.5, and the minimum detectable difference was kept at 1. For the 
interaction effect, the pattern was the Kronecker product of the main effects patterns, and the minimum 
detectable difference was also kept at 1. In order not to lose the sense of generalization, the residual variance was 
adjusted to 1, while the intra-subject variance was 2 2 for data sets with homogeneous variance and ranged 
between 1,252 and 3,002 for those with heterogeneous variance, in order to maintain a ratio greater than or equal 
to 4:1 between the highest and lowest variances, a criterion in many tests of heteroscedasticity of variances. Thus, 
as most observations of a normal distribution are within three standard deviations, variances above 1,252 would 
virtually eliminate the chance of a significant difference for the interaction factor. Therefore, type I error rates for 
the interaction hypothesis tests were estimated as the proportion of p-values less than or equal to α out of a total 
of 10,000 tests. 

For the study of the statistical power of mixed linear models (assessment of the rejection rate of H0 when this is 
true), the main effects pattern was adjusted to -0.5 and +0.5, and the minimum detectable difference was 1. For 
this purpose of the interaction, the pattern was also the Kronecker product of the main effects patterns, and the 
minimum detectable difference was also adjusted to 2. In this case, the residual variance was adjusted to 1 2, 
while the within-subject variance was 2 2 for the data sets with homogeneous variance and ranged between 1002 
and 2002 for those with heterogeneous variance, in order to also maintain the ratio greater than or equal to 4:1 
between the highest and lowest variances and provide a greater possibility of significant differences in the 
simulated data sets. The statistical power estimates of the hypothesis tests for the interaction were estimated as 
the proportion of p-values less than or equal to α out of a total of 10,000 tests. 
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2.6 Selection of the Covariance Model 

The models were also evaluated for their ability to fit the data using the Bayesian information criterion (BIC) 
provided by the Glimmix procedure. The frequency with which covariance structures were chosen by the 
selection criteria from a total of 10,000 analyzes was computed. 

2.7 Glimmix Procedure for Experiments Involving Repeated Measures 

In mixed linear models, the response is modeled as a sum of three terms: the design matrix associated with the 
fixed effects multiplied on the right by an unknown coefficient vector, the random effects multiplied on the left 
by the associated design matrix, and a residual error (Littell et al., 1996). The mean of the response is 
parameterized as the first term in the sum above since random effects and residual error are generally assumed to 
be zero. As long as this design matrix is full rank, there is no other coefficient vector providing the same mean. 
The covariance of the response is determined by the covariances of the random effects and the residual error. 
Both random effects and residual error are assumed to have certain distributions with covariance matrix 
structures to be specified. Unknown associated parameters are generally restricted to certain spaces and must be 
estimated (Gbur, et al., 2012). 

In mixed linear models, the response covariance matrix is modeled as the sum of two matrices: the product of the 
random effects covariance matrix with the associated design matrix and the residual error covariance matrix. The 
construction of a mixed linear model usually involves the selection of covariance matrix structures 
parameterized for random effects and residual error. However, even if the response covariance matrix is not over 
parameterized, some specifications of covariance structures may result in the parameters being unidentifiable. 
When tuning such models, the software may or may not indicate a problem with model identifiably. The 
Glimmix procedure applies a lower bound of 0 to all variance components in the model. If the lower bound is 
removed, the actual value of the variance component can be negative. This means that there was not enough 
variation in the response to attribute any variation to the random effect, controlling for everything else in the 
model. While there is nothing wrong with the results when the variance components are negative, some 
statisticians recommend removing random effects from the model, despite being an important component of the 
model. Other statisticians argue that one should keep the random effect term in the model even if it is 0. For 
example, if the variance component is the block effect, and if the effect variance were 0, it would still be 
important to keep it in the model, as it is part of the design of the experiment. Another option is to specify a 
lower bound to prevent estimates from getting too close to 0. All analyzes with mixed linear models had 
convergence greater than 99.9%, unless otherwise stated in the tables (Guerin & Stroup, 2000). 

2.8 Simulation Algorithm 

In summary, this study consisted of the following steps: 

(1) Generation of a data set using the Python language with the Numpy library based on a random vector with a 
multivariate normal response to generate an experiment with a completely randomized design with two 
treatments, 4, 8 or 12 experimental units (subjects) per treatment, and 4 or 8 repeated measurements. 

(2) Statistical analysis of the experiment generated by mixed linear models using the Glimmix procedure in the 
SAS program with the following 56 options of assumptions about the pattern of the covariance structure for the 
matrix R: VC, CS, CSH, AR (1), ARH (1), TOEP, TOEPH, TOEP (2), TOEPH (2), TOEP (3), TOEPH (3). 

(3) Repeat step (1) and (2) 10,000 times.  

(4) Registration of the BIC information criteria for evaluating the ability to fit the data for each data set 
generated, in addition to estimating the type I error rate or the power of the hypothesis test of the interaction 
between treatment and repeated measures for the significance level of 0.05 or 0.01. 

(5) Repetition of steps (1) to (4) using the following covariance matrices for data simulation: I, VC, CS, CSH, 
AR (1), ARH (1), TOEP, TOEPH, TOEP (2), TOEPH (2), TOEP (3), TOEPH (3), BAND (3), BANDH (3). 

3. Results and Discussion 

3.1 Selection of Covariance Structures 

Tables A1 to A6 (see Appendix A) provide the percentages of choice of covariance patterns by the BIC 
information criterion for data sets with the following patterns for the simulated covariance structure of the data: 
I, CS, AR, TOEP, TOEP (2), TOEP (3), BAND (3), VC, CSH, ARH, TOEPH, TOEPH (2), TOEPH (3), BANDH 
(3). The values correspond to the proportion of choice of covariance models by the BIC information criterion 
related to the analysis of 10,000 data sets from simulated experiments with repeated measures involving 4 and 8 



jas.ccsenet.org Journal of Agricultural Science Vol. 14, No. 12; 2022 

69 

repeated measures, sample size of 4, 8 and 12, and the previous covariance patterns. All values correspond to 
convergence equal to or greater than 99.9%, except when specified in the tables. 

Overall, the results indicate that the assumption most frequently chosen by the information criteria resulted from 
the empirical covariance structure of the analyzed data sets, particularly for those sets with larger sample sizes. 
Furthermore, the frequency with which covariance models were chosen increased as the number of repeated 
measures and sample size increased. 

For simulations with 4 repeated measures and 4 samples sizes, the VC covariance model was chosen in 54% of 
the cases when the simulated covariance structure of the data was I (identity) and 40% when the covariance 
structure was also VC (Table A1). For simulations with 8 samples sizes, the VC covariance model was chosen in 
78% of the cases when the simulated covariance structure was I and 44% when the covariance structure was also 
VC (Table A2). For simulations with 12 samples sizes, the VC covariance model was chosen in 84% of the cases 
when the simulated covariance structure was I and 35% when the covariance structure was also VC (Table A3). 

For simulations with 8 repeated measures and 4 samples sizes, the VC covariance model was chosen in 57% of 
the cases when the simulated covariance structure of the data was I (identity) and 43% when the covariance 
structure was also VC (Table A1). For simulations with 8 samples sizes, the VC covariance model was chosen in 
79% of the cases when the simulated covariance structure was I and 54% when the covariance structure was also 
VC (Table A2). For simulations with 12 samples sizes, the VC covariance model was chosen in 85% of the cases 
when the simulated covariance structure was I and 44% when the covariance structure was also VC (Table A3). 

For simulations with 4 repeated measures and 4 samples sizes, the CS covariance model was chosen in 50% of 
the cases when the simulated covariance structure of the data was also CS and 15% and 12% when the 
covariance structure was CSH and AR, respectively (Table A1). For simulations with 8 samples sizes, the CS 
covariance model was chosen in 81% of the cases when the simulated covariance structure was also CS and 7% 
and 8% when the covariance structure was CSH and AR, respectively (Table A2). For simulations with 12 
samples sizes, the CS covariance model was chosen in 90% of the cases when the simulated covariance structure 
was also CS and 2% and 4% when the covariance structure was CSH and AR, respectively (Table A3). 

For simulations with 4 repeated measures and 4 samples sizes, the CSH covariance model was chosen in 34% of 
the cases when the simulated covariance structure of the data was also CSH (Table A1). For simulations with 8 
samples sizes, the CSH covariance model was chosen in 74% of the cases when the simulated covariance 
structure was also CSH and 19% when the covariance structure was VC (Table A2). For simulations with 12 
samples sizes, the CSH covariance model was chosen in 89% of the cases when the simulated covariance 
structure was also CSH and 27% when the covariance structure was VC (Table A3). 

The AR covariance model was the most chosen by different simulated covariance patterns such as AR, ARH, 
TOEP, TOEPH and TOEP (2). For simulations with 4 repeated measures and 4 samples sizes, the AR covariance 
model was chosen in 41, 21, 43 and 21% of the cases when the simulated covariance structure of the data was 
also AR, ARH, TOEP and TOEPH, respectively (Table A1). For simulations with 8 samples sizes, the AR 
covariance model was chosen in 74, 21 and 71% of the cases when the simulated covariance structure was AR, 
ARH, TOEP (Table A2). For simulations with 12 samples sizes, the CSH covariance model was chosen in 86, 79 
and 31% of the cases when the simulated covariance structure was also AR, TOEP and TOEP (2) (Table A3). For 
simulation with 8 repeated measures and sample size 4, the AR covariance model was chosen 64, 45, 62 and 43% 
of the cases when the simulated covariance structure was AR, ARH, TOEP and TOEPH, respectively (Table A4). 
For simulation with 8 repeated measures and sample size 8, the AR covariance model was chosen 95, 54, 89 and 
48% of the cases when the simulated covariance structure was AR, ARH, TOEP and TOEPH, respectively (Table 
A5). For simulation with 8 repeated measures and sample size 12, the AR covariance model was chosen 98, 36, 
92 and 31% of the cases when the simulated covariance structure was AR, ARH, TOEP and TOEPH, 
respectively (Table A6). 

For simulated datasets with covariance pattern more complex than CS and CSH such as AR, ARH, TOEP and 
TOEPH, the AR covariance model often represented a considerable part of the choice for the BIC information 
criterion, often being the most chosen model, particularly for simulations with a greater number of repeated 
measurements and sample size. 

For data sets with BAND (3) and BANDH (3) patterns for empirical covariance structure, the TOEP (3) and 
TOEPH (3) model represented most of the choices by the BIC information criterion and increased with the 
increase in the number of repeated measurements and in the sample size. 
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The UN covariance model was never the most chosen considering all simulated scenarios, and the frequency 
decreased as the number of repeated measures and sample sizes increased. Results indicated that in some cases 
when datasets are smaller UN pattern can still be a valid option although UN covariance model is 
computationally costly. 

3.2 Study on Type I Error in Mixed Linear Models Applied to Experiments Involving Repeated Measures 

Tables B1 to B3 (see Appendix B) provide type I error rates for null hypothesis test from the interaction effect 
between treatments and repeated measures for linear mixed models associated with CS, AR and TOEPH 
covariance models with ߙ equals to 0.01. Type I error rates for linear mixed models with others covariance 
models and for those with ߙ equals to 0.05 are found in the Supplementary Table section. 

The results for type I error rates showed that the use of covariance models that do not recognize heterogeneous 
correlations or any correlation at all between repeated measures can either (a) inflate type I error or (b) reduce it 
to very conservative levels, which can affect the conclusion of agricultural experiments. 

Type I error rates from the others covariance model vary depending on the simulated covariance structures. 
However, variations on the number of repeated measurements and sample size did not show much of a 
difference, results were vastly similar. Despite not being the most cost-efficient model, the application of UN 
covariance structure showed the rate of type I error closer to nominal error rates across all scenarios. 

Type I error rates from datasets with equal variances and without correlation between repeated measures (I 
structure) were close to the nominal rate for all assumptions about the pattern of covariance structure between 
repeated measures, and did not vary with increasing sample size, nor with the increase in the number of repeated 
measures for both levels of significance (Supplementary Tables 1 and 12). Results indicated that it is not efficient 
the application of more complex covariance structures to datasets known not to have any covariance issues. Type 
I error rates from datasets simulated with unequal variances and without correlation between repeated measures 
(VC structure) were close to the nominal rate for some assumptions about the pattern of covariance structure 
between repeated measures, but it was larger surprisingly for other assumptions including VC model itself 
(Supplementary Tables 2 and 13). 

However, if there is non-zero correlation, assumptions about the pattern of the covariance structure in the data 
affect the rejection rates of H0 either due to (a) or (b). Covariance patterns that sub model the simulated 
covariance structure showed a greater tendency to inflate the null hypothesis rejection rate to more liberal levels 
than those established by the level of significance. For example, the use of LM models with CS covariance 
model, which does not model heterogeneous correlations, increases the rejection of H0 in favor of alternative 
hypothesis (type I error) in several cases. 

For a significance level of 1%, the bias towards the nominal rate for type I error was 5 times the standard error 
 when CS model was used to model a TOEP covariance pattern (Table B9). For a 5% significance level, this (ߙ)
bias was 2ߙ when CS model was used to model several covariance patterns. In addition, the VC model reduced 
type I error rate to lower levels compared to ߙ or to virtually zero, except when the simulated pattern had also 
null correlations for all pairs of repeated measures (I and VC models). 

3.3 Study on Statistical Power in Mixed Linear Models Applied to Experiments Involving Repeated Measures 

Tables C10 to C12 (see Appendix C) provide statistical power for the null hypothesis test from the interaction 
effect between treatments and repeated measures for linear mixed models associated with CS, AR and TOEPH 
covariance models with ߙ equals to 0.01. Statistical power for linear mixed models associated with others 
covariance models and for those with ߙ equals to 0.05 are found in the Supplementary Table section. 

While statistical power increased as the sample sizes increased, it decreased as the number of repeated measures 
increased. Results indicated that increasing sample sizes give a better return if statistical power is a major 
concern. Moreover, datasets with simulated covariance structures with heterogeneous variances showed a greater 
statistical power compared to the homogeneous versions. Overall, an optimum covariance model that it is not 
trivial such as CV model and that considers some degree of correlation, but it is not that complex such as UN 
model, provided the larger statistical power for all combinations of simulated covariance structures and applied 
covariance model. 

For datasets with the highest number of repeated measures, statistical power was above 90% in most of the 
combinations evaluated regardless of the covariance model applied. However, for datasets with the lowest 
number of repeated measures, statistical powers were at lower levels, particularly for 1% statistical significance. 
In situations with a few sample sizes, choosing the most appropriate covariance model is a key factor for finding 
differences among treatments. 
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4. Discussion 

Violation of assumptions in univariate and multivariate ANOVA resulted in sampling bias and inflated rates of 
type I error, resulting in estimates with little robustness and, consequently, affecting the significance of 
treatments and the results of experiments. As the observations within the groups do not contribute completely 
independent information, the effective sample size is smaller than the total number of observations from all 
groups, and therefore increases the probability of rejecting the null hypothesis, affecting the quality of the 
estimator. 

The statistical power and type I error rate of linear mixed models (LMM) based on residual covariance patterns 
were also investigated by Gueorguieva and Krystal (2004), who concluded that an ideal type I error control 
results from the covariance structure specified that corresponds to the empirical covariance structure (observed 
data). The authors investigated AR and UN covariance model and the results revealed more adequate type I error 
rates when AR covariance model was applied. However, the simulated data already had an autoregressive 
structure, implying that previous knowledge about the covariance structure in repeated measure experiment is 
key to provide correct LMM adjustments. 

Goedert et al. (2013) conducted a simulation with a data set with violation of the sphericity assumption. They 
found greater statistical power of LMM-UN compared to RANOVA, particularly for small sample sizes. 
Gueorguieva and Krystal (2004) also found similar type I error rates for UN covariance model and RANOVA 
with Greenhouse-Geisser correction in a simulation study with four time points. However, Type I error rates 
were slightly more correct for LMM-CS. 

Harverkamp and Beauducel (2017) evaluated the error rate of simulated type I error rate from repeated-measure 
experiments with sphericity violation, different numbers of repeated measures and degrees of correlations. The 
following methods were considered: RANOVA, LMM-CS and LMM-UN. Results showed a progressive bias for 
LMM associated with UN covariance model, particularly for small sample sizes and larger number of repeated 
measures, regardless of sphericity violation. Moreover, LMM associated with CS covariance model and 
RANOVA showed greater bias when sphericity was violated, reaching over 1.5α. Results suggested that both 
LMM-CS and RANOVA should not be recommended when sphericity is violated. LMM-UN provided more 
correct type I error when sample size was larger, and sphericity was violated. However, the study did not 
investigate intermediate models between compound symmetry and unstructured. 

Our study investigated several models from the simplest to the most complex. Results indicated that LMM-AR, 
an intermediate structure between LMM-CS and LMM-UN, should be recommended since it provides a greater 
control of type I error and a lower statistical cost while maintaining statistical power at adequate levels, 
particularly for reduced sample size experiments. On the other hand, LMM-CS applied to data with more 
complex covariance structure increased type I error, particularly for 1% significance level. Although LMM-CS 
also displayed greater statistical power, that was followed by a greater chance of rejecting H0 when it is true, 
affecting results from experiments. 

5. Conclusion 

In the analysis of experiments that involve repeated measures, it is essential that assumptions are adequate 
regarding the covariance structure of the data so that the model has adequate levels of error and statistical power. 
Moreover, appropriate covariance models become even more important depending on the number of repeated 
measures and sample sizes. The results of this work reinforce the need for the correct adjustment of mixed 
models and the care with the use of the standard adjustments of the models offered as a default in statistical 
programs. In many statistical packages capable of dealing with mixed linear models, the default model is VC or 
CS, which are the ones with the most irregular results regarding type I error and statistical power in this study. 
Thus, intermediate covariance models such as the AR should be included among candidate models evaluated by 
the researcher. 
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Appendix A 

Selection 

Table A1. Percentage of covariance models chosen by the BIC selection criterion from a total of 10000 analyzes 
with mixed linear models from data from simulated experiments involving 4 repeated measures, and sample size 
4 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN 

 ----------------------------------------------------------- % -----------------------------------------------------------

I 53.99 7.47 3.11 4.11 1.59 5.23 1.62 1.72 2.41 6.60 2.22 9.93 

VC 39.98 4.69 9.58 2.77 5.64 2.53 4.27 1.36 7.49 4.18 4.45 13.06

CS 1.34 50.01 7.23 11.58 2.75 7.61 3.75 0.49 0.33 2.52 0.89 11.50

CSH 0.93 15.13 33.93 7.71 8.65 1.73 9.75 0.38 0.70 1.47 2.15 17.47

AR 1.18 12.41 2.23 40.88 5.55 4.46 1.83 6.05 2.71 9.91 3.00 9.79 

ARH 0.86 5.08 7.91 21.20 21.87 1.42 4.00 3.46 6.44 5.16 8.21 14.39

TOEP 0.37 6.21 1.62 42.62 5.44 4.44 1.85 4.25 2.01 15.29 5.92 9.98 

TOEPH 0.25 2.66 4.90 20.59 23.78 1.79 3.95 2.53 4.76 5.86 14.18 14.75

TOEP (2) 5.65 4.07 0.83 18.96 2.90 8.43 2.11 16.16 7.47 19.18 3.62 10.62

TOEPH (2) 0.23 0.44 0.52 17.88 10.51 2.68 1.94 22.96 18.16 15.93 4.87 3.88 

TOEP (3) 0.09 0.98 0.52 5.54 1.86 10.14 3.40 0.30 0.04 52.15 12.18 12.80

TOEPH (3) 0.09 0.52 0.89 4.24 3.76 3.49 9.21 0.16 0.20 14.76 41.54 21.14

BAND (3) 0.69 1.57 0.68 2.96 1.13 9.80 2.96 0.14 0.06 53.32 14.39 12.30

BANDH (3) 0.89 1.22 1.68 2.59 2.30 1.65 8.55 0.13 0.08 11.32 50.71 18.88

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 
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Table A2. Percentage of covariance models chosen by the BIC selection criterion from a total of 10000 analyzes 
with mixed linear models from data from simulated experiments involving 4 repeated measures, and sample size 
8 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN

 ----------------------------------------------------------- % -----------------------------------------------------------

I 78.32 6.17 1.10 3.57 0.61 2.53 0.13 1.31 0.68 4.76 0.38 0.44

VC 44.16 2.69 19.49 1.97 11.10 0.84 1.70 0.63 10.69 2.37 3.08 1.28

CS 0.02 81.40 3.95 7.58 0.74 4.83 0.45 0.05 0.00 0.42 0.01 0.55

CSH 0.02 7.11 75.09 2.92 6.58 0.22 5.43 0.01 0.05 0.20 0.28 2.09

AR 0.02 8.27 0.64 73.65 3.42 2.23 0.31 2.65 0.40 7.31 0.73 0.37

ARH 0.00 1.64 6.78 20.27 54.79 0.32 1.77 0.93 2.76 1.70 7.31 1.73

TOEP 0.00 1.99 0.12 70.94 3.15 3.24 0.27 1.22 0.16 16.89 1.61 0.41

TOEPH 0.00 0.41 1.74 16.85 53.78 0.56 2.36 0.32 1.28 3.18 17.17 2.35

TOEP (2) 0.48 1.09 0.09 29.2 2.02 7.69 0.38 31.67 2.88 22.64 1.22 0.64

TOEPH (2) 0.23 0.44 0.52 17.88 10.51 2.68 1.94 22.96 18.16 15.93 4.87 3.88

TOEP (3) 0.00 0.05 0.02 1.19 0.25 9.96 1.20 0.00 0.00 81.66 4.48 1.19

TOEPH (3) 0.00 0.00 0.00 0.73 0.93 1.68 9.02 0.00 0.00 8.22 73.64 5.78

BAND (3) 0.00 0.08 0.02 0.16 0.06 9.09 1.21 0.00 0.00 84.04 4.36 0.98

BANDH (3) 0.02 0.03 0.12 0.17 0.44 0.44 8.99 0.00 0.00 3.92 82.03 3.84

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 

 

Table A3. Percentage of covariance models chosen by the BIC selection criterion from a total of 10,000 analyzes 
with mixed linear models from data from simulated experiments involving 4 repeated measures, and sample size 
12 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN

 ----------------------------------------------------------- % -----------------------------------------------------------

I 84.21 5.53 0.52 3.27 0.36 1.42 0.05 0.56 0.28 3.63 0.15 0.02

VC 35.11 1.38 26.75 1.09 14.87 0.24 1.42 0.29 14.23 1.26 2.85 0.51

CS 0.00 89.69 2.40 4.08 0.16 3.33 0.14 0.00 0.00 0.13 0.00 0.07

CSH 0.00 1.82 88.95 0.55 3.99 0.04 3.6 0.00 0.00 0.01 0.07 0.97

AR 0.00 4.09 0.20 85.58 2.07 1.63 0.04 0.89 0.07 5.11 0.22 0.10

ARH 0.00 0.36 4.43 10.97 74.87 0.12 1.57 0.12 0.93 0.55 5.39 0.69

TOEP 0.00 0.56 0.03 78.54 1.79 4.17 0.15 0.13 0.02 13.69 0.80 0.12

TOEPH 0.00 0.01 0.55 7.78 69.86 0.29 2.83 0.02 0.17 0.93 16.7 0.86

TOEP (2) 0.03 0.22 0.01 30.66 1.30 6.71 0.12 37.21 1.72 20.81 0.90 0.31

TOEPH (2) 0.01 0.08 0.20 13.40 14.37 2.13 1.63 23.37 22.30 12.04 6.58 3.89

TOEP (3) 0.00 0.00 0.00 0.10 0.01 9.02 0.48 0.00 0.00 87.56 2.47 0.36

TOEPH (3) 0.00 0.00 0.00 0.1 0.18 0.45 8.36 0.00 0.00 1.71 85.17 4.03

BAND (3) 0.00 0.03 0.01 0.03 0.01 7.93 0.42 0.00 0.00 88.81 2.55 0.21

BANDH (3) 0.00 0.00 0.01 0.01 0.00 0.08 7.94 0.00 0.00 0.56 89.85 1.55

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 
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Table A4. Percentage of covariance models chosen by the BIC selection criterion from a total of 10000 analyzes 
with mixed linear models from data from simulated experiments involving 8 repeated measures, and sample size 
4 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN

 ----------------------------------------------------------- % -----------------------------------------------------------

I 56.5 10.2 1.74 4.84 0.95 7.65 4.08b 1.42 1.32ª 6.95 1.10ª nc 

VC 42.92 7.53 7.82 3.91 4.54 4.69 8.54b 1.33 5.21ª 5.78 4.21ª nc 

CS 0.17 74.78 4.73 1.72 0.39 10.80 6.44b 0.06 0.00a 0.36 0.14ª nc 

CSH 0.10 26.59 44.93 3.00 1.43 5.01 17.95b 0.04 0.08ª 0.18 0.16ª nc 

AR 0.00 2.05 0.20 63.66 3.98 9.77 6.60b 1.93 0.41ª 6.71 2.38ª nc 

ARH 0.02 1.20 1.12 44.48 19.14 5.11 12.30b 1.83 1.21ª 5.33 5.99ª nc 

TOEP 0.01 5.62 0.56 62.37 5.08 13.41 8.60b 0.26 0.11ª 1.75 0.83ª nc 

TOEPH 0.03 3.08 2.84 42.77 21.43 7.53 16.63b 0.23 0.27ª 1.58 2.07ª nc 

TOEP (2) 0.49 0.80 0.13 16.86 1.18 18.96 6.68b 12.16 1.65ª 31.09 7.22ª nc 

TOEPH (2) 0.56 0.64 0.39 13.33 4.06 12.17 12.70b 9.43 5.11ª 23.15 15.08ª nc 

TOEP (3) 0.09 0.92 0.04 31.71 1.97 23.32 9.72b 0.46 0.23ª 23.86 5.20ª nc 

TOEPH (3) 0.06 0.57 0.25 25.28 6.02 16.13 16.05b 0.49 0.37ª 22.10 9.88ª nc 

BAND (3) 0.05 0.48 0.10 3.84 0.39 15.07 7.38b 0.03 0.00a 59.20 10.88ª nc 

BANDH (3) 0.06 0.36 0.21 2.90 1.25 10.42 10.70b 0.03 0.05ª 51.47 19.98ª nc 

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 

 

Table A5. Percentage of covariance models chosen by the BIC selection criterion from a total of 10000 analyzes 
with mixed linear models from data from simulated experiments involving 8 repeated measures, and sample size 
8 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN

 ----------------------------------------------------------- % -----------------------------------------------------------

I 79.30 7.80 0.27 4.30 0.13 0.86 0.02b 1.19 0.22ª 5.83 0.08ª 0.00

VC 54.06 4.81 14.56 3.17 7.47 0.36 0.88b 0.71 7.02ª 4.08 2.79ª 0.09

CS 0.00 97.21 0.99 0.09 0.00 1.59 0.11b 0.00 0.00a 0.00 0.00a 0.01

CSH 0.00 11.29 85.03 0.29 0.09 0.42 2.76b 0.00 0.00a 0.00 0.00a 0.12

AR 0.00 0.21 0.00 94.51 0.85 1.59 0.13b 0.11 0.00a 2.55 0.05ª 0.00

ARH 0.00 0.05 0.08 53.95 40.0 0.35 1.54b 0.12 0.11ª 2.00 1.73ª 0.07

TOEP 0.00 1.21 0.05 89.08 1.15 8.02 0.38b 0.00 0.00a 0.09 0.01ª 0.01

TOEPH 0.00 0.39 0.62 48.01 42.66 2.10 5.81b 0.00 0.00a 0.16 0.05ª 0.2 

TOEP (2) 0.00 0.03 0.00 12.79 0.18 13.68 0.44b 7.47 0.06ª 63.21 2.09ª 0.05

TOEPH (2) 0.00 0.06 0.02 9.93 3.73 6.60 5.59b 5.05 2.49ª 40.00 26.21ª 0.32

TOEP (3) 0.00 0.01 0.00 35.27 0.54 27.81 1.16b 0.01 0.00a 34.53 0.58ª 0.09

TOEPH (3) 0.00 0.01 0.01 27.54 7.72 14.79 10.68b 0.00 0.01ª 31.72 6.88ª 0.64

BAND (3) 0.00 0.02 0.00 0.51 0.01 5.23 0.32b 0.00 0.00a 92.50 1.38ª 0.03

BANDH (3) 0.00 0.00 0.01 0.33 0.13 3.17 2.65b 0.00 0.00a 74.26 19.30ª 0.15

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 
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Table A6. Percentage of covariance models chosen by the BIC selection criterion from a total of 10000 analyzes 
with mixed linear models from data from simulated experiments involving 8 repeated measures, and sample size 
12 

Simulated model 
Adjusted model 

VC CS CSH AR ARH T TH T (2) TH (2) T (3) TH (3) UN

 ----------------------------------------------------------- % -----------------------------------------------------------

I 84.84 6.52 0.04 3.19 0.04 0.3 0.03 0.71 0.07 4.26 0.00 0.00

VC 44.1 2.65 22.24 1.94 12.29 0.07 0.29 0.6 11.01 2.12 2.69 0.00

CS 0.00 99.02 0.37 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00

CSH 0.00 2.14 96.93 0.00 0.00 0.02 0.91 0.00 0.00 0.00 0.00 0.00

AR 0.00 0.01 0.00 98.39 0.23 0.5 0.00 0.00 0.00 0.87 0.00 0.00

ARH 0.00 0.00 0.01 36.25 61.8 0.1 0.65 0.00 0.00 0.42 0.77 0.00

TOEP 0.00 0.24 0.00 91.89 0.45 7.33 0.07 0.00 0.00 0.02 0.00 0.00

TOEPH 0.00 0.04 0.13 31.07 61.69 1.33 5.7 0.00 0.00 0.00 0.03 0.01

TOEP (2) 0.00 0.00 0.00 5.59 0.03 12.61 0.15 2.04 0.02 78.34 1.22 0.00

TOEPH (2) 0.00 0.00 0.00 2.95 2.55 4.97 5.65 1.46 1.19 36.46 44.76 0.01

TOEP (3) 0.00 0.00 0.00 28.09 0.2 40.88 0.38 0.00 0.00 30.12 0.33 0.00

TOEPH (3) 0.00 0.00 0.00 18.26 9.89 19.4 17.59 0.00 0.00 27.11 7.74 0.01

BAND (3) 0.00 0.00 0.00 0.03 0.00 3.78 0.06 0.00 0.00 95.86 0.27 0.00

BANDH (3) 0.00 0.00 0.00 0.04 0.04 1.5 1.8 0.00 0.00 70.45 26.15 0.02

Note. Convergence: 99.9% > a ≥ 90.0%.; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 

All values shown have a convergence greater than 99.9%, unless otherwise specified. 

T = TOEP; TH = TOEPH; T2 = TOEP (2); T3 = TOEP (3). 
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Appendix B 

Type I error (હ	= 0.01) 

Table B1. Empirical values for type I error from the hypothesis test of the interaction between treatments and 
repeated measures using mixed models with several covariance structures applied to simulated data with CS 
covariance structure, with different numbers of repeated measures and sample sizes, and with statistical 
significance equal to 0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.0000 0.0000 0.0000 

8 0.0000 0.0000 0.0000 

CS 
4 0.0092 0.0079 0.0106 

8 0.0105 0.0102 0.0120 

CSH 
4 0.0039 0.0071 0.0089 

8 0.0015 0.0063 0.0094 

AR 
4 0.0081 0.0110 0.0139 

8 0.0096 0.0109 0.0130 

ARH 
4 0.0074 0.0112 0.0148 

8 0.0045 0.0112 0.0143 

TOEP 
4 0.0152 0.0094 0.0118 

8 0.0363 0.0149 0.0121 

TOEPH 
4 0.0075 0.0082 0.0097 

8 0.0061b 0.0094 0.0102 

TOEP (2) 
4 0.0079 0.0042 0.0047 

8 0.0053 0.0021 0.0020 

TOEPH (2) 
4 0.0054 0.0043 0.0047 

8 0.0100a 0.0027 0.0024 

TOEP (3) 
4 0.0087 0.0033 0.0040 

8 0.0065 0.003 0.0027 

TOEPH (3) 
4 0.0060 0.0050 0.0063 

8 0.0098a 0.0045 0.0039 

UN 
4 0.0117 0.0104 0.0105 

8 nc 0.0097 0.0111 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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Table B2. Empirical values for type I error from the hypothesis test of the interaction between treatments and 
repeated measures using mixed models with several covariance structures applied to simulated data with AR 
covariance structure, with different numbers of repeated measures and sample sizes, and with statistical 
significance equal to 0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.0005 0.0006 0.0004 

8 0.0048 0.0029 0.0031 

CS 
4 0.0175 0.0191 0.0181 

8 0.0403 0.0415 0.0393 

CSH 
4 0.0091 0.0139 0.0162 

8 0.0141 0.0285 0.0321 

AR 
4 0.0054 0.0084 0.0085 

8 0.0046 0.0074 0.0088 

ARH 
4 0.0047 0.0092 0.0088 

8 0.0033 0.0084 0.0088 

TOEP 
4 0.0134 0.0111 0.0093 

8 0.0310 0.0112 0.0105 

TOEPH 
4 0.0070 0.0100 0.0086 

8 0.0073b 0.0118 0.0090 

TOEP (2) 
4 0.0087 0.0048 0.0038 

8 0.0095 0.0058 0.003 

TOEPH (2) 
4 0.0121 0.0055 0.0036 

8 0.0225a 0.0079 0.0046 

TOEP (3) 
4 0.0086 0.0063 0.0038 

8 0.0092 0.0071 0.0051 

TOEPH (3) 
4 0.0094 0.0077 0.0054 

8 0.0176a 0.0095 0.0056 

UN 
4 0.0091 0.0091 0.0083 

8 nc 0.0101 0.0109 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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Table B3. Empirical values for type I error from the hypothesis test of the interaction between treatments and 
repeated measures using mixed models with several covariance structures applied to simulated data with TOEPH 
covariance structure, with different numbers of repeated measures and sample sizes, and with statistical 
significance equal to 0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.0022 0.0008 0.0016 

8 0.0066 0.0037 0.0030 

CS 
4 0.0289 0.0304 0.0329 

8 0.0522 0.0504 0.0481 

CSH 
4 0.0099 0.0122 0.0124 

8 0.0138 0.0166 0.016 

AR 
4 0.0100 0.0125 0.0156 

8 0.0124 0.0148 0.0164 

ARH 
4 0.0070 0.0080 0.0105 

8 0.0069 0.0084 0.0100 

TOEP 
4 0.0180 0.0132 0.0146 

8 0.0294 0.0147 0.0155 

TOEPH 
4 0.0082 0.0088 0.0093 

8 0.0070 0.0108 0.0087 

TOEP (2) 
4 0.0133 0.0072 0.0080 

8 0.0114 0.0068 0.0057 

TOEPH (2) 
4 0.0133 0.0066 0.0056 

8 0.0205 0.0076 0.0049 

TOEP (3) 
4 0.0117 0.0078 0.0084 

8 0.0132 0.0069 0.0067 

TOEPH (3) 
4 0.0107 0.0081 0.0072 

8 0.0171 0.0067 0.0049 

UN 
4 0.0090 0.0104 0.0092 

8 nc 0.0113 0.0106 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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Appendix C 

Statistical power (હ	= 0.01) 

Table C1. Statistical power for the hypothesis test of the interaction between treatments and repeated measures 
using mixed models with several covariance structures applied to simulated data with CS covariance structure, 
with different numbers of repeated measures and sample sizes, and with statistical significance equal to 0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.0558 0.2565 0.6236 

8 0.0497 0.2097 0.5890 

CS 
4 0.6705 0.9893 0.9999 

8 0.8070 0.9987 1.0000 

CSH 
4 0.4698 0.9809 0.9999 

8 0.5171 0.9954 1.0000 

AR 
4 0.1574 0.6899 0.9628 

8 0.0817 0.3275 0.6807 

ARH 
4 0.1261 0.6595 0.9535 

8 0.0491 0.2983 0.6372 

TOEP 
4 0.4556 0.9632 0.9995 

8 0.5082 0.9847 0.9999 

TOEPH 
4 0.2823 0.9471 0.9993 

8 0.1384 0.9658 0.9999 

TOEP (2) 
4 0.1104 0.4250 0.7825 

8 0.0573 0.2384 0.6051 

TOEPH (2) 
4 0.0600 0.3170 0.6724 

8 0.0356 0.1548 0.4643 

TOEP (3) 
4 0.1263 0.3536 0.7193 

8 0.0548 0.2423 0.6026 

TOEPH (3) 
4 0.0519 0.2146 0.5748 

8 0.0271 0.1580 0.4529 

UN 
4 0.1994 0.9234 0.9988 

8 nc 0.7320 0.9964 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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Table C2. Statistical power for the hypothesis test of the interaction between treatments and repeated measures 
using mixed models with several covariance structures applied to simulated data with AR covariance structure, 
with different numbers of repeated measures and sample sizes, and with statistical significance equal to 0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.0839 0.2914 0.5837 

8 0.1140 0.3283 0.5571 

CS 
4 0.4331 0.8414 0.9710 

8 0.3596 0.6969 0.8813 

CSH 
4 0.2741 0.7866 0.9563 

8 0.1937 0.6044 0.8318 

AR 
4 0.1731 0.6358 0.8971 

8 0.0887 0.3640 0.6400 

ARH 
4 0.1317 0.6095 0.8851 

8 0.0556 0.3285 0.6005 

TOEP 
4 0.1756 0.5981 0.8715 

8 0.1271 0.3371 0.5998 

TOEPH 
4 0.0974 0.5359 0.8412 

8 0.0194 0.2626 0.5358 

TOEP (2) 
4 0.1564 0.5128 0.8035 

8 0.1127 0.3560 0.6077 

TOEPH (2) 
4 0.0910 0.3898 0.7011 

8 0.0654 0.2656 0.5063 

TOEP (3) 
4 0.0798 0.3347 0.6632 

8 0.0804 0.3216 0.5905 

TOEPH (3) 
4 0.0450 0.2439 0.5594 

8 0.0435 0.2401 0.4943 

UN 
4 0.0705 0.4682 0.8096 

8 nc 0.1131 0.3634 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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Table C3. Statistical power for the hypothesis test of the interaction between treatments and repeated measures 
using mixed models with several covariance structures applied to simulated data with TOEPH covariance 
structure, with different numbers of repeated measures and sample sizes, and with statistical significance equal to 
0.01 

Covariance model Repeated measure 
Sample size 

4 8 12 

VC 
4 0.2551 0.6826 0.9166 

8 0.2299 0.6413 0.8681 

CS 
4 0.6702 0.9670 0.9972 

8 0.6512 0.9132 0.9961 

CSH 
4 0.4444 0.9516 0.9969 

8 0.4729 0.9301 0.9983 

AR 
4 0.4427 0.9221 0.9939 

8 0.2430 0.9120 0.9687 

ARH 
4 0.3442 0.9196 0.9943 

8 0.2918 0.9045 0.9970 

TOEP 
4 0.3046a 0.8505 0.9839 

8 0.1915 0.8254 0.9429 

TOEPH 
4 0.1697a 0.8348 0.9862 

8 0.0628 0.8142 0.9919 

TOEP (2) 
4 0.4044 0.8580 0.9814 

8 0.2385 0.8123 0.9195 

TOEPH (2) 
4 0.2321a 0.8196 0.9780 

8 0.1948 0.8023 0.9781 

TOEP (3) 
4 0.2113 0.7092 0.9465 

8 0.1943 0.6934 0.9297 

TOEPH (3) 
4 0.1188a 0.7076 0.9573 

8 0.1496 0.6973 0.9851 

UN 
4 0.1265 0.7559 0.9762 

8 nc 0.7435 0.9310 

Note. Except where specified, all values represent convergence greater than 99.9%. 

Convergence: 99.9% > a ≥ 90.0%; 90.0% > b ≥ 80.0%; 80.0 > c ≥ 70.0%; 70.0 > d ≥ 60.0%; nc < 60%. 
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