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Abstract

Numerical models of collisionless shocks robustly predict an electron distribution composed of both thermal and
nonthermal electrons. Here, we explore in detail the effect of thermal electrons on the emergent synchrotron
emission from subrelativistic shocks. We present a complete “thermal + nonthermal” synchrotron model and
derive properties of the resulting spectrum and light curves. Using these results, we delineate the relative
importance of thermal and nonthermal electrons for subrelativistic shock-powered synchrotron transients. We find
that thermal electrons are naturally expected to contribute significantly to the peak emission if the shock velocity is
0.2c, but would be mostly undetectable in nonrelativistic shocks. This helps explain the dichotomy between
typical radio supernovae and the emerging class of “AT2018cow-like” events. The signpost of thermal electron
synchrotron emission is a steep optically-thin spectral index and a ν2 optically-thick spectrum. These spectral
features are also predicted to correlate with a steep postpeak light-curve decline rate, broadly consistent with
observed AT2018cow-like events. We expect that thermal electrons may be observable in other contexts where
mildly relativistic shocks are present and briefly estimate this effect for gamma-ray burst afterglows and binary–
neutron-star mergers. Our model can be used to fit spectra and light curves of events and accounts for both thermal
and nonthermal electron populations with no additional physical degrees of freedom.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Shocks (2086); Radio transient sources
(2008); Supernovae (1668)

1. Introduction

Synchrotron emission from relativistic electrons energized in
astrophysical shock waves is observed in a wide variety of
astrophysical sources. It is typically assumed that strong
collisionless shocks accelerate a nonthermal power-law dis-
tribution of relativistic electrons via diffusive shock (first-order
Fermi) acceleration (Bell 1978; Blandford & Ostriker 1978;
Blandford & Eichler 1987). This idea is directly supported both
theoretically—by first-principles particle-in-cell (PIC) simula-
tions (e.g., Spitkovsky 2008; Sironi & Spitkovsky 2009, 2011;
Park et al. 2015)—and observationally—via power-law syn-
chrotron emission that is observed ubiquitously in astro-
physical sources. Radio emission from nonrelativistic shocks
(βsh= 1; where βshc is the shock velocity) in interacting
supernovae (SNe) has long been interpreted within a framework
of nonthermal electron acceleration and shock-amplified magn-
etic fields (e.g., Chevalier 1982; Weiler et al. 2002). It is also
understood that synchrotron self-absorption (SSA) plays a
crucial role in such events (Chevalier 1998). These ideas
have also been successfully applied to ultrarelativistic explo-
sions (Γsh? 1, where 1 1sh sh

2bG = - is the shock Lorentz
factor). Multiwavelength observations of gamma-ray burst
(GRB) afterglows are well interpreted as synchrotron emission
produced by a nonthermal power-law distribution of relativistic
electrons (Sari et al. 1998).

Recently, a new and enigmatic class of transients whose
prototype is AT2018cow has been discovered (Prentice et al. 2018;

Ho et al. 2019, 2020, 2021; Margutti et al. 2019; Coppejans
et al. 2020; Bright et al. 2021; Perley et al. 2021). These events,
discovered via optical transient surveys, are characterized by
fast-evolving, bright optical emission, peculiar X-ray properties,
and unusually luminous radio and millimeter (mm) emission.
There is currently no consensus model that easily explains
all aspects of these events, but it is typically thought that
circumstellar interaction must play an important role. In
particular, the radio–mm data are usually interpreted within an
SSA framework similar to radio SNe models (Chevalier
1998). The shock velocities inferred from such modeling place
these events in an unusual mildly relativistic regime, with
0.1 βsh 0.5.
Ho et al. (2021) presented a detailed analysis of the radio and

mm observations of AT2020xnd (see also Bright et al. 2021).
The well-sampled mm spectral-energy distribution (SED) of
this event showed an unusually steep optically-thin spectral
index α≈− 2 (where Fν∝ να) that is difficult to explain
within the standard model of shock-powered synchrotron
emission. Steep spectra were also observed for AT2018cow
and CSS161010 at early epochs, potentially implicating a
common physical mechanism. This led Ho et al. (2021) to
propose that the observed steep spectra were due to
synchrotron emission from a thermal population of electrons.
Using this model, Ho et al. (2021) showed that the SEDs could
be well fit if the peak (SSA) frequency was ( )100~ times
larger than the frequency at which “typical” thermal electrons
emit. For such parameters, the model could simultaneously
explain both the steep optically-thin and shallow, optically-
thick slopes of observed events (see, e.g., Figure 11 in Ho et al.
2021). The success of this modeling makes the thermal-electron
scenario compelling, but it also raises many new questions.
Why would thermal electrons be observed for AT2018cow-like
events but not in radio SNe or GRB afterglows? How is this
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seemingly peculiar property related to the unusually bright and
prolonged mm emission in such events? Is it fine-tuned that the
inferred SSA frequency is ( )100~ times above the char-
acteristic frequency at which most thermal electrons emit?

Separate from the specific observational motivation given
above, numerical models of shock acceleration predict that
most of the shock energy resides in the thermal population and
that the nonthermal tail contains only a small fraction of the
total postshock energy (e.g., Park et al. 2015; Crumley et al.
2019). Why then, should the nonthermal particles dominate the
observed emission? And are there physical conditions under
which the thermal population is more observationally sig-
nificant than typically has been assumed?

Here we address these questions by considering in greater
detail the effect of thermal electrons on observed properties of
synchrotron emission from subrelativistic blast waves. The
problem of synchrotron emission from a combined thermal +
nonthermal electron distribution has previously been studied
for ultrarelativistic shocks in GRBs (Eichler & Waxman 2005;
Giannios & Spitkovsky 2009; Ressler & Laskar 2017; Warren
et al. 2018; Samuelsson et al. 2020), and separately in the
context of hot accretion flows (e.g., Özel et al. 2000). Here we
study the case of subrelativistic shocks (Γshβsh< 1) relevant to
AT2018cow-like events, radio SNe, radio flares from binary–
neutron-star (BNS) mergers, and GRBs at late times. We show
that the shock velocity is the most important parameter that
governs whether thermal electrons have an appreciable impact,
and in particular, that thermal electrons are naturally expected
to dominate peak emission for mildly relativistic shocks similar
to those inferred for AT2018cow-like events.

This paper is organized as follows: we begin in Section 2 by
presenting the basic formalism and our model assumptions.
This applies the results of Mahadevan et al. (1996) to the

astrophysical setting of subrelativistic shocks (analogous to
Özel et al. 2000 who applied these results to hot accretion
flows). We extend these results by considering the effects of
synchrotron self-absorption and the fast-cooling regime for
thermal electron synchrotron emission (Section 2.1). In
Section 3 we discuss the synchrotron spectrum resulting from
this model (Figure 1) and derive expressions for relevant break
frequencies in the problem (Section 3.1). We subsequently
present the landscape of subrelativistic shock-powered synchro-
tron transients, illustrating a qualitative dichotomy between
nonrelativistic and mildly relativistic events (Section 4). We
provide a brief discussion of the expected light curves and
temporal evolution in Section 5, and conclude by discussing
broader implications of our results (Section 6).

2. The Thermal + Nonthermal Model

We consider a subrelativistic strong shock propagating with
velocity βshc into a medium of density n. For simplicity, we
assume a constant shock compression ratio of 4, formally valid
if the total postshock energy density is dominated by
nonrelativistic particles.4 The downstream electron number
density is then ne= 4μen, where μe; 1.18 for solar composi-
tion. PIC simulations show that, even when a nonthermal
power-law tail of electrons is accelerated at the shock front,
the majority of postshock electrons do not participate in
diffusive shock acceleration and instead occupy a quasi-
thermal distribution (Park et al. 2015; Crumley et al. 2019).
Denoting the dimensionless temperature of these electrons as

Figure 1. Example SEDs. Left: a “thermal spectrum,” where peak emission is dominated by thermal electrons (νa < νj). Solid (dashed) light gray curves show the
optically-thin contribution of thermal (power-law) electrons to the SED, while the black curve shows the combined emergent spectral luminosity, including
synchrotron self-absorption (Equation (21)). Vertical dotted curves show characteristic break frequencies (see Table 1): the thermal synchrotron frequency νΘ
(Equation (11)), the frequency νm corresponding to the minimal Lorentz factor of power-law electrons, the synchrotron self-absorption frequency νa (Equations (28),
(29), (30)), the frequency νj (να) at which emission (absorption) transitions from being dominated by thermal electrons to power-law electrons (Equations (25), (26)),
and the synchrotron cooling frequency νcool (Equations (24), (16)). The spectral slope (stated above each segment) can be especially steep in the optically-thin thermal
regime, νa < ν < νj (Equation (22)). Right: same as left panel, but for a “nonthermal spectrum,” where peak emission is dominated by the power-law electron
distribution (νa > νj). The SED follows the standard nonthermal spectrum, except at very low frequencies <να (Equation (26)) where the SSA spectrum softens. The
thermal electron population would be mostly unobservable in this regime, even though it is energetically (and by number) dominant. Both panels show cases where
νcool falls above other relevant frequencies, but alternative orderings may be possible and are fully accounted for in Section 3.1. The left panel is calculated using
βsh = 0.45, n = 103 cm−3, and t = 25 days. The right panel is for βsh = 0.1, n = 104 cm−3, and t = 200 days. In both cases we assume δ = 0.01, p = 3, òB = 0.1,
and òT = 1.

4 Technically, in the parameter regime of interest to us, the shock
compression ratio will depend mildly on the shock velocity, which sets
whether the electrons are relativistic, and on the proton-to-electron temperature
ratio, which sets how much of the postshock thermal energy resides in the
nonrelativistic population.
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Θ≡ kBTe/mec
2, the postshock electron energy density is

( )u a n m ce e e
2= Q Q , where

( ) ( )a
6 15

4 5
1Q »

+ Q
+ Q

is an approximation that is good to within ∼2% (Gammie &
Popham 1998; Özel et al. 2000). Assuming that ions govern the
shock jump conditions (so that the effective adiabatic index is
5/3 regardless of whether or not thermal electrons are
relativistic), the total postshock thermal energy density is

( ) ( )u n m c9 8 p sh
2m b= , where μ; 0.62 for solar composition.

If the electron “thermalization efficiency” is òT 1 such that
ue= òTu (Margalit et al. 2021) then the postshock electron
temperature is,
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and β−1≡ βsh/0.1. The thermal electron population occupies a
Maxwell–Jüttner distribution
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where γ is the electron Lorentz factor and

( ) ( ) ( )f K2 1 52
2Q º Q Q

is a correction-term that is only relevant in the nonrelativistic
regime ( f≈ 1 for Θ 1; f? 1 for Θ= 1).

We additionally consider a nonthermal electron population
which we model as a power-law distribution∝ γ− p (where
p> 2) that is terminated at some minimal Lorentz factor γm.
We choose

( ) ( ) ( )a1 6m thg gQ = á ñ = + Q Q

equal to the mean Lorentz factor of thermal electrons 〈γ〉th,
such that γm≈ 3Θ (≈1) for Θ? 1 (Θ= 1). This choice is
somewhat ad hoc, but motivated by the fact that only
suprathermal electrons are capable of undergoing diffusive
shock acceleration (the so-called “injection problem;” see, e.g.,
Blandford & Eichler 1987). Note that the exact value of γm
does not affect our results and is in any case degenerate with
the assumed energy in the nonthermal tail. The nonthermal
electron distribution is then fully specified with only one
additional parameter. We choose this to be δ—the ratio of
energy in the nonthermal electron population to that of thermal
electrons (in terms of conventional òe notation, δ≡ òe/òT). The
nonthermal power-law distribution is therefore
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is a correction factor that is only important in the nonrelativistic
regime (g≈ 1 for Θ? 1).
Finally, we assume that plasma instabilities amplify magn-

etic fields in the downstream region with “efficiency” òB, such
that B2/8π= òBu. This implies

( )B n m c n9 1.6 G 9B p Bsh
2 2

, 1
1 2

5
1 2

1 p m b b= » - -

where n5= n/105 cm−3 is the upstream density, and òB,−1

= òB/0.1.
The angle-averaged (assuming isotropic pitch angle distribu-

tion) synchrotron emissivity of the thermal electron population
is

( ) ( ) ( )j
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is a scaling frequency that corresponds to the synchrotron
frequency of electrons near the thermal peak when Θ 1.
Similarly, the absorption coefficient of thermal electrons is
given by
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In Equations (10), (12) above, the function
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is an approximation of the frequency dependence when Θ? 1
(Mahadevan et al. 1996). Although Mahadevan et al. (1996)
provide different fitting coefficients as a function of Θ 1, we
find it unnecessary to include these corrections here. As we
later show, only high frequencies ( )x 102 are generally of
interest (especially when Θ 1). In this regime x? 1 and
Equation (13) is exact (Petrosian 1981).
The pitch-angle-averaged synchrotron emissivity of non-

thermal electrons at frequencies ( )x m
2 g Q is5
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5 At lower frequencies the emissivity and absorption coefficient are affected
by the power-law termination at γm, such that asymptotically jν,pl ∝ x1/3, and
αν,pl ∝ x−5/3. We include this in our numeric calculations for completeness,
but remark that this has no affect on any of our results, and can therefore be
neglected.

3

The Astrophysical Journal Letters, 923:L14 (12pp), 2021 December 10 Margalit & Quataert



The nonthermal absorption coefficient is similarly
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Note that pitch-angle averaging has often been neglected in
many previous applications of nonthermal synchrotron emis-
sion (e.g., Chevalier 1998). We include this order-unity
correction here because it is expected in the standard scenario
where magnetic fields are turbulently amplified and because
thermal electrons are more appreciably affected by such
averaging (Mahadevan et al. 1996).

2.1. Fast Cooling

Observed emission depends on line-of-sight integrals of the
emissivity and absorption coefficients. Synchrotron-emitting
electrons whose Lorentz factor exceeds

( )m c

B t
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will radiate most of their energy over a timescale that is short
compared to the dynamical time, t= 100 days t100. Such fast-
cooling electrons would only reside within a fractional depth

( ) 1cool
1 g g~ - behind the shock front, so that the effective

line-of-sight averaged distribution function is n gá¶ ¶ ñ~
( ) ( )n min 1, coolg g g¶ ¶ . The emissivity and absorption coeffi-
cient are proportional to this distribution function and therefore
similarly affected, introducing a frequency-dependent correc-
tion to Equations (10), (12), (14), and (16), above.

For power-law electrons, emission/absorption at frequency
x is contributed predominantly by electrons of Lorentz
factor γ/Θ∼ x1/2. This implies the standard fast-cooling
correction
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where ( )xcool,pl cool
2gº Q . For thermal electrons, however,

this no longer applies. At frequencies x? 1 (of main interest
here), emission/absorption samples the high-frequency tail of
comparatively lower-energy electrons (which vastly outnumber
electrons at higher Lorentz factors). In this regime, the

synchrotron frequency x is instead related to electrons whose
characteristic Lorentz factor is γ/Θ∼ (2x)1/3,6 and the cooling-
corrected emissivity and absorption coefficients are
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where ( )x 2cool,th cool
3gº Q .

The total thermal + nonthermal emissivity is simply
〈jν〉= 〈jν,th〉+ 〈jν,pl〉, and the combined absorption coefficient
is similarly additive, so that 〈αν〉= 〈αν,th〉+ 〈αν,pl〉. The
emergent specific luminosity is then

( ) ( )L R
j

e4 1 , 21R2 2p
a

=
á ñ
á ñ

-n
n

n

a-á ñn

where R is the characteristic size of the emitting region, and the
effective absorption and emission coefficients are given by
Equations (10), (12), (14), (16), (19), and (20) above.

3. Spectrum

The synchrotron spectrum that results from the “thermal +
nonthermal” model (Equation (21)) typically peaks at the SSA
frequency νa. At frequencies ν< νa, emission is self-absorbed
and the spectrum rises as a function frequency, whereas above
it, emission is optically-thin and the spectral luminosity
decreases with frequency. There are two distinct regimes that
are of particular interest: (i) emission near the SSA frequency is
dominated by thermal electrons; or (ii) emission near this
frequency is instead dominated by the power-law electron
distribution.
Figure 1 shows representative SEDs in these two cases.

Solid (dashed) light gray curves show the optically-thin
thermal (power-law) electron emission, while solid black
curves show the combined spectrum, including self-absorption
(Equation (21)). Vertical dotted curves show relevant break
frequencies. These are listed in Table 1 and discussed in greater
detail in Section 3.1. The left panel shows a “thermal spectrum”

where peak emission is governed by thermal electrons. At low
frequencies ν< νa, the SED follows the Rayleigh–Jeans
limit∝ ν2. This is shallower than the canonical ν5/2 SED of
optically-thick power-law synchrotron emission (Rybicki &
Lightman 1979). At frequencies slightly above peak, the SED

Table 1
Key Frequencies and Their Definitions

Notationa Equation Definition

νΘ Equation (11) characteristic synchrotron frequency of thermal electrons
νm Equation (6) characteristic synchrotron frequency of power-law electrons, ( )m m

2n g n= Q Q

νcool Equations (23), (24) synchrotron cooling frequency
νa Equation (33) synchrotron self-absorption (SSA) frequency, 〈αν〉R = 1 at νa
νj Equation (25) frequency above which power-law > thermal emissivity, 〈jν,th〉 = 〈jν,pl〉 at νj
να Equation (26) frequency above which power-law > thermal absorption, 〈αν,th〉 = 〈αν,pl〉 at να

Notes. See Section 3 for further details.
a Note that normalized frequency x ≡ ν/νΘ is used interchangeably with ν throughout the text.

6 This can be shown by examining the synchrotron integral of the thermal
population, ∝ ∫z2e− zF(x/z2)dz, where z ≡ γ/Θ. At high frequencies x ? 1 this
is ( )ze dzz x z2

òµ - + , and the integral is dominated by electrons with Lorentz
factors near z = (2x)1/3, at which the function in the exponent attains a
minimum (this is equivalent to the method of steepest descent approach that
was used in deriving Equation (13); see Petrosian 1981).
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follows the optically-thin thermal emissivity and the spectral
slope can be extremely steep. The spectrum does not follow a
power-law-form in this regime, however, we can characterize
the slope steepness via the frequency-dependent spectral index

d j dln lnth ,tha nº á ñn ,
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n
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Q

The expression above applies in the typical setting where
frequencies of interest are? νΘ (Equation (11)), and the two
cases (whose spectral slope differs by 1/3) depend on whether
the observing frequency is below or above the fast-cooling
break frequency νcool.

The spectral index implied by Equation (22) becomes
increasingly steep at higher frequencies, and is a unique
feature of the thermal electron model. However, above some
frequency νj, emission by power-law electrons will come to
dominate the thermal-electron emission. This transition fre-
quency (red dotted curve in Figure 1) depends primarily on the
relative number of power-law and thermal electrons, which is
∝δ in our model. Lower values of δ imply a smaller fraction of
power-law electrons and a higher transition frequency (in
Section 3.1 we provide approximate expressions for this
dependence).

Figure 1 illustrates the significance of νj. At frequencies
ν> νj, emission is governed by nonthermal electrons and the
spectrum follows standard results for power-law synchrotron
emission—the SED is∝ ν−( p−1)/2 (∝ ν− p/2) in the slow-
(fast-) cooling optically-thin regimes. If a given event is only
observed at frequencies ν> νj then the thermal-electron
contribution would go undetected and this would be
indistinguishable from a purely nonthermal electron model.

This is further illustrated by the right hand panel of Figure 1,
which shows a “nonthermal spectrum” where the peak (SSA)
frequency is νa> νj. In this case, peak emission is dominated
by the power-law electron distribution, the usual ν5/2 SSA
optically-thick spectrum applies below peak, and the entire
optically-thin SED follows the standard power-law spectrum.
Thermal electrons—though present and energetically dominant
in this model—would not affect the observed emission except
at very low frequencies ν< να∼ νj where the optically-thick
spectrum is expected to soften (at ν< να the optical depth
becomes dominated by thermal electrons). These frequencies
are usually observationally inaccessible so that our “thermal +
nonthermal” model would be indistinguishable from purely
nonthermal synchrotron models that are typically used to model
observations. We also note that the low-frequency spectrum is
sensitive to geometric effects (related to the spatial distribution
of emitting electrons) and can be susceptible to scintillation,
further complicating potential identification of a break
frequency at να.

In the following subsection we discuss the various break
frequencies shown in Figure 1 in greater detail. Readers
interested primarily in our main results may wish to skip
forward to Section 4, while those interested in understanding
the origin of different regions and scaling with physical
parameters are welcome to continue to Section 3.1.

3.1. Estimates of Break Frequencies

As illustrated by Figure 1, the resulting SED of the thermal +
nonthermal model depends on several characteristic frequencies.
The first is the “thermal” frequency νΘ given by Equation (11).
Many other relevant frequencies scale in some well-determined
way with νΘ. For example, the frequency νm that corresponds to
the minimum Lorentz factor of power-law electrons is simply

( )m m
2n g n= Q Q (and is νm≈ 9νΘ for Θ 1).

The synchrotron cooling frequency νcool can also affect the
observed SED. As discussed in Section 2.1, this frequency is
related to γcool (Equation (18)) as
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for power-law emitting electrons, and
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for the thermal electron population. The observed cooling
break therefore depends on whether emission is dominated by
power-law or thermal electrons. This is governed by the
frequency νj at which the thermal and power-law emissivities
are equal, 〈jν,th〉= 〈jν,pl〉. The transcendental equation for νj
does not permit a closed form analytic solution, but is easily
solvable numerically. In general, the solution depends on δ, p,
and Θ, however the Θ dependence is suppressed for Θ 1. An
accurate fitting function to the solution is given by

( ) ( ) ( ) ( )x 1 40.94 49.97 ln 12.51 ln 25j
2 d dQ » - +

where xj≡ νj/νΘ following our standard notation. This is
accurate to within 3% for 10−6� δ� 1/3, p= 3, and any
Θ? 1, but is also reasonably accurate for Θ 1 or other
values of 2.2� p� 3.4 (17% accuracy). For a fiducial δ= 0.01,
we find that xj≈ 540. An alternative approximation that is
accurate to within 19% between 10−5� δ� 0.1 is given by
xj≈ 150δ−0.25.
A related frequency να is defined by equating the absorption

coefficients of the two populations such that 〈αν,th〉= 〈αν,pl〉 at
να. This frequency is typically a factor 2 greater than νj, and
we find that the approximation

( ) ( ) ( )x x x1 5.221 ln 26j j
0.6373Q »a

-

is accurate to within several percent throughout the parameter
range considered above.
Finally, the SED peak is set by the SSA frequency νa. If the

absorption coefficient is dominated by thermal electrons
(x< xα) then the SSA frequency is determined by the condition
〈αν,th〉R= 1 (Equations (12), (20)). In the slow-cooling regime,
this is governed by an optical-depth parameter
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that describes the (thermal contribution to the) optical depth at
frequency ≈νΘ. Note the extreme sensitivity of τΘ to the shock
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velocity and the fact that τΘ? 1 for typical parameters. This
implies that one would not expect to see “bare”(unabsorbed)
Maxwellian SEDs that peak at ∼νΘ. We elaborate on this in
Section 4.

Using the optical-depth parameter τΘ (Equation (27)), we
find that the thermal SSA frequency is well approximated by
the fitting function

( )
( ) ( )

( )x x
3.434

ln

4.762

ln
0.028 28a,th cool,th 2

3
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⎠t t

< » - -
Q Q

-

which is accurate to within 3% over many orders of magnitude
in optical depth, 30� τΘ� 1012. The SSA frequency varies
between xa,th∼ 10–103 over this range of τΘ. An alternative,
simpler approximation that is accurate to within 18% for
5× 103� τΘ� 2× 1011 is given by x 7.1a,th

0.2t» Q . In the fast-
cooling regime xa,th> xcool,th the fitting functions above are
comparably accurate when transformed as

( ) ( ) ( )x x 0.68 eq.28 ; . 29a,th cool,th
coolt
g

t> » ´ 
Q

Q Q

If the absorption coefficient is instead dominated by power-
law electrons then the SSA frequency is determined by the
condition 〈αν,pl〉R= 1. This results in the analytic solution
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Noting that g(Θ)≈ (p− 1)(3Θ)−(p−1) when Θ= 1 and
g(Θ)≈ 1 for Θ 1, we can express the power-law-dominated
SSA frequency as
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in the slow-cooling regime, and
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in the fast-cooling case, and we have chosen a fiducial p= 3 for
the estimates above. In total, the SSA frequency is related to
Equations (28), (29), (30),
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, . 33a
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The different frequencies discussed in this section are also
summarized in Table 1.

4. Phase Space of Transients

In the previous section we showed that the ordering of
characteristic frequencies (primarily the self-absorption fre-
quency νa and the frequency νj at which thermal and
nonthermal electrons have comparable emissivity) determines
whether thermal electrons contribute appreciably to observed
emission. This is illustrated by the different spectra in the left

and right hand panels of Figure 1. A natural question
subsequently arises—what type of shock-powered transients
might be expected to show signatures of a thermal electron
distribution?
Figure 2 addresses this question by showing the parameter-

space of subrelativistic shock-powered synchrotron transients.
This phase space is determined by the upstream ambient
density n, the shock velocity βshc, and the size of the emitting
region R. We relate the size to the shock velocity as R= βshct
such that t is an effective dynamical time (fixed to 100 days in
Figure 2). This corresponds to the true time-since-explosion
only if the shock velocity is temporally constant. If the shock
decelerates, then this time parameter would be larger than the
actual observing epoch (nonspherical geometry can also affect
this). The electron temperature and magnetic field are directly
related to βsh, n through Equations (2), (3), (9), and we adopt
fiducial values òT= 1, òB= 0.1, δ= 0.01, and p= 3.
Blue contours in Figure 2 show the frequency at which the

SED peaks. Throughout nearly the entire illustrated parameter
space, the thermal optical depth is τΘ? 1 so the peak
frequency is ≈νa (Equation (33)) as set by SSA. Black
contours show the peak specific luminosity at this frequency
(Equation (21)). Gray shaded regions show the parameter space
in which optically-thin emission is set entirely by the power-
law electron distribution. This is determined by the condition
νj< νa (Equations (25), (30)) which implies a spectrum similar
to the right panel in Figure 1. Within the light gray region
να νa/5 and the presence of thermal electrons may still be
discernible through their effect on the self-absorbed spectrum:
between να< ν< νa the SSA spectrum follows the canonical
ν5/2 scaling of a power-law electron distribution, but at
frequencies ν< να this softens to a thermal SSA spectrum∝ ν2

(see right panel in Figure 1). In the dark gray shaded region
να= νa so that this softening would occur well below the SED
peak and would be more difficult to detect.
Finally, we also plot in Figure 2 contours of the spectral

index just above the SED peak (at frequency ν≈ 2νa). For
power-law electrons with our canonical p= 3 this spectral
index would be−(p− 1)/2=−1 in the slow-cooling regime
and−p/2=−1.5 in the fast-cooling case. The transition
between fast and slow-cooling regimes is apparent through the
kink in the spectral-index contours. Alternatively, if emission
near νa is dominated by the thermal electron population, then the
spectral index can be significantly steeper (Equation (22); left
panel, Figure 1). We highlight this with the yellow shaded area in
Figure 2, which shows regions where the spectral index is steeper
than would be expected for purely power-law electron emission
(<−1.5).
Figure 2 shows a clear dichotomy between shock-powered

synchrotron transients with mildly relativistic velocities
0.2 βsh 1 and those with nonrelativistic velocities
βsh= 1. In the former case, peak emission is dominated by
thermal electrons and a steep optically-thin spectrum can be
attained, whereas the latter are governed entirely by the
nonthermal power-law electron distribution. This dichotomy
almost exclusively depends on shock velocity with only very
weak dependence on density. This is because the thermal
optical-depth parameter τΘ scales strongly with velocity
(Equation (27)). Specifically, in order for thermal electrons to
contribute to the optically-thin emission, the frequency at
which emission transitions from thermal to nonthermal
electrons must fall above the self-absorption frequency, i.e.,
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νa,th< νj must be satisfied. For our fiducial δ= 0.01, this
implies (Equations (25), (28), (29)) τΘ< 1.7× 109 (or ΘτΘ/
γcool< 2× 1010 in the fast-cooling regime), and therefore that
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is required for thermal electrons to dominate the SED peak. The
top case corresponds to the slow-cooling regime while the
bottom case applies in the fast-cooling regime (νa,th< νcool,th).
Smaller (larger) values of δ would imply a lower (higher)
threshold velocity. Specifically, using the rough scalings
xj∝ δ−0.25 and xa

0.2tµ Q (see text below Equations (25), (28)),
we find that the critical shock velocity (Equation (34)) scales as
δ0.125 in the slow-cooling regime and δ0.089 in the fast-
cooling case.

Condition (34) also reflects the thermal electron temperature
Θ, shown with the right vertical axis in Figure 2. When Θ 1,
thermal electrons are relativistic and produce copious synchro-
tron emission, whereas the majority of thermal electrons are
nonrelativistic if Θ= 1 and only a small fraction are capable of
contributing to emission at frequencies ν? νΘ of relevance.
The threshold velocity (Equation (34)) therefore depends on the
electron thermalization efficiency òT. Lower efficiencies
(smaller òT) would increase the threshold shock velocity and
push the region where thermal electrons dominate peak
emission to higher shock velocities.

The strong dependence on shock velocity evident in Figure 2
helps explain why nonrelativistic shocks in radio SNe are well
modeled by a power-law electron distribution and do not show
any clear evidence for thermal electrons, whereas the emerging
class of AT2018cow-like events that have mildly relativistic
inferred velocities βsh 0.2 exhibit steep spectra consistent with
a contribution from thermal electrons (Ho et al. 2021). Red points
in Figure 2 show shock properties inferred by Ho et al. (2021) for
AT2018cow at an epoch of 10 days (Ho et al. 2019; Margutti
et al. 2019), AT2020xnd at 40 days (Ho et al. 2021), CSS161010
at 99 days (Coppejans et al. 2020), and AT2018lug at 81 days
(the “Koala;” Ho et al. 2020). In comparison, typical radio SNe
have velocities of order βsh∼ 0.03 and densities n∼ 105–
106 cm−3 at timescales of ∼100 days postexplosion (Weiler
et al. 2002).
In addition to providing a natural explanation for why steep

thermal-electron spectra would be seen in AT2018cow-like
events but not in standard radio SNe, Figure 2 may also help
explain the unusually bright and prolonged millimeter emission
observed in AT2018cow and AT2020xnd. At a fixed ambient
density—shocks with higher velocities produce more luminous
emission that peaks at higher frequencies (especially above
βsh 0.1 where the blue contours kink to the left). In particular,
there is a large swath of parameter-space where emission peaks in
the millimeter band. This is especially pronounced considering
potential selection biases toward detecting the most luminous
events.

Figure 2. Parameter space of shock-powered subrelativistic synchrotron transients, where both thermal and nonthermal (power-law) electrons are considered. At a
given epoch, t = 100 days, blue curves show contours of frequency at which the SED peaks (≈νa; set by SSA) as a function of shock velocity βshc and ambient
density n. Black contours show the (peak) specific luminosity at this frequency. Yellow dashed contours show the spectral index slightly above this peak frequency (at
ν = 2 × peak). Within the light (dark) gray shaded region, emission (and absorption) are dominated by the power-law electron distribution and thermal electrons
would not affect the observations (see Figure 1, right panel). Outside these regions, emission near the peak (SSA) frequency is instead dominated by thermal electrons
(see left panel of Figure 1). This may be observationally distinguishable from a purely power-law electron model by the unusually steep optically-thin spectral slope
(yellow shaded region). The shock velocity is the most important parameter that governs whether a steep “thermal” or a standard “nonthermal” spectrum would be
observable (Equation (34)). The dichotomy between radio SNe and AT2018cow-like events can therefore be naturally understood as an artifact of the nonrelativistic
(βsh = 1) versus mildly relativistic (βsh  0.2) velocities inferred for these events (see Section 2).
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5. Temporal Evolution

In Figure 2 we presented the phase-space of synchrotron-
powered transients as a function of shock velocity and ambient
density, at a fixed epoch t. Here we briefly discuss the temporal
evolution of transients within this phase space, as time (and
potentially upstream density, shock velocity) progresses. There
is a rich phenomenology of possible light curves depending on
the time evolution of various quantities of interest. Here we
focus on the specific case where the upstream follows a wind-
density profile, n∝ r−2.

Figure 3 shows example light curves resulting from our
model. These are calculated assuming that a blast wave of initial
velocity βsh= 0.4 and total energy 1050 erg is driven into an
ambient wind whose density is ( )n r10 cm 10 cm5 3 16 2= - - .7

The shock dynamics are integrated assuming a spherical thin-
shell model that is accurate in both the relativistic and
nonrelativistic regimes (Huang et al. 1999; Pe’er 2012;

see Schroeder et al. 2020 for details on this implementation).
This results in a gradually decelerating shock and a time-
dependent shock velocity cβsh(t), radius R(t), and upstream
density n[R(t)]. We calculate the light curves from Equation (21)
using these time-dependent quantities and adopting fiducial
òT= 1, òB= 0.1, δ= 0.01, and p= 3.
The middle panel of Figure 3 shows resulting light curves at

different frequencies (labeled). At a given frequency, the light-
curve peaks when the SSA frequency passes through the band.
Shortly after peak, the high-frequency light curves exhibit a sharp
drop. This is directly related to the steep thermal spectrum at
frequencies ν> νa,th (Equation (22)) and is a unique property of
the thermal electron model. This is consistent also with the results
of Kashiyama et al. (2018; e.g., their Figure 7). The top panel of
Figure 3 shows snapshots of the spectrum at different epochs and
illustrates the steep optically-thin SED that is obtained at early
times. The correlation between the unusually steep spectrum and
steep light-curve decline rate is further illustrated by the bottom
panel in this figure, which shows the spectral index (d Lln n
d ln ;n solid curves) and temporal index (d L d tln ln ;n dotted–
dashed curves) at different frequencies (different colors). Both the
temporal and spectral indices obtain steep (negative) values
shortly after peak at 90GHz.
Figure 3 illustrates another important feature: if there is

enough mass in the surrounding CSM, shock deceleration will
eventually cause initially mildly relativistic shocks that satisfy
Equation (34) to violate this condition at late times. This
implies that the relative contribution of thermal electrons to the
observed emission will decay as a function of time, and that at
late enough epochs the light curves and spectra will revert to
the standard power-law electron distribution picture. This can
be seen from the SED snapshots in the top panel of Figure 3. At
early times, the spectrum exhibits the tell-tale ν2 self-absorbed
rise and steep optically-thin decline that are characteristic of
thermal electrons (see left panel, Figure 1). At later epochs, the
optically-thin (optically-thick) slope flattens (steepens) and is
eventually governed entirely by nonthermal electrons. This is
also imprinted in the late-time low-frequency light curves,
which no longer show the steep postpeak decline apparent at
higher frequencies. We note that this agrees with modeling of
AT2018cow and AT2020xnd, which suggested that the late-
time data was well fit within the standard power-law
synchrotron framework (Margutti et al. 2019; Ho et al.
2021). The spectrum in this power-law-dominated regime
follows the right panel in Figure 1, and the temporal evolution
can be derived using Equations (21), (30). This reverts to the
results of Chevalier (1998) in the slow-cooling regime, and to
the results presented in Appendix C of Ho et al. (2021) for the
fast-cooling regime.
We can understand the results presented in Figure 3 more

quantitatively by estimating the light-curve scalings in the case
where thermal electrons dominate the emission (as particularly
relevant at high frequencies and early epochs). We pursue this
by denoting the temporal-scaling of the shock radius as R∝ t m.
In general (and in our numerical model) the radius does not
follow a power-law evolution and the exponent m should
instead be interpreted as the instantaneous expansion rate
d R d tln ln . In typical cases we expect m= 1 at early epochs
before significant shock deceleration, and lower values of m at
later times (the Sedov–Taylor solution for a wind medium sets
a lower limit of m� 2/3). This scaling implies that βsh∝ t m−1

and n∝ t−2m. If the electron temperature and magnetic field are

Figure 3. Middle panel: Example light curves for a decelerating shock wave in
a wind density profile. At a fixed frequency (labeled), the light curve peaks
when the SSA frequency passes through the band. The high-frequency peak is
dominated by thermal electrons. This implies a steep postpeak decline,
qualitatively consistent with observed AT2018cow-like events (Equation (38)).
At later times, the light-curve samples power-law electrons and the decline rate
softens. Top: SED snapshots of the same model at different epochs. At early
times, the SED peaks at high frequencies, showing tell-tale signs of thermal
electrons—a steep optically-thin spectrum (Equation (22)) and a ∝ ν2 self-
absorbed slope. Shock deceleration causes the observed contribution of thermal
electrons to drop with time. By 180 days, the SED lacks clear signatures of
thermal electrons and is instead governed by power-law electrons. Bottom: the
spectral (solid) and temporal (dotted–dashed) indices at different frequencies
(following the color scheme of the middle panel) as a function of time. At high
frequencies, both spectral and temporal indices attain steep (negative) values
shortly after light-curve peak. This is a unique feature of the thermal-electron
model.

7 This corresponds to a mass-loss rate of M M2.1 10 yr4 1  ´ - -

( )v 1000 km sw
1- , where vw is the wind velocity.
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determined by Equations (2), (3), and (9) then we additionally
have Θ∝ t2(m−1), and B∝ t−1.

The SED peak is set by SSA. If this is governed by thermal
electrons then the SSA frequency is given by Equations (11), (28),
(29). Here we adopt the simpler approximation xa,th

0.2tµ Q (or
( )xa,th cool

0.2t gµ QQ for fast-cooling electrons) which is better
suited for deriving analytic scaling relations. Using these
approximations along with Equations (11), (27), and (18), we
find that the thermal SSA frequency scales as

( )
t

t

,

,
35

m

ma,th

1.8 2.8
a,th cool

1.4 2.2
a,th cool

⎧
⎨⎩

n
n n
n n

µ
<

>

-

-

for a wind density profile and Θ 1. The top (slow-cooling)
case is bound between t−1 to t−1.6 for physical values of
2/3�m� 1. The peak luminosity of SSA thermal electrons is
L Ra,th

2
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2nµ Q (Equation (21)), which therefore scales as
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In the slow-cooling case, this is bound between L consta,th ~ and
La,th∝ t−2.53. The above equations imply that—for a wind-density
medium—the peak (SSA) frequency of thermal electrons drops
moderately as a function of time, while the peak flux is sensitive
to the shock deceleration parameter m.

If emission is dominated by thermal electrons, then ν< νa,th
prior to the light-curve peak and the luminosity is

( )L La,th
2

a,thn n»n . From Equations (35), (36) this implies

( ) ( )L t tpeak 37m4 2< µn
-

in both the slow- and fast-cooling regimes, and that the light-
curve rises to peak as∼ t2/3− t2. This is consistent with our
numerical results shown in Figure 3.

Following the light-curve peak, unusually steep decays were
observed at high frequencies for AT2018cow and AT2020xnd,
qualitatively consistent with the thermal electron model. For
example, in Figure 3 we show the ∼t−4 scaling inferred for
AT2020xnd to guide the eye (Ho et al. 2021). A crude analytic
estimate of the temporal slope in this regime can be derived
using Equations (22), (35), and (36). Shortly after peak, the
luminosity is roughly ( ) ( )L La,th a,thth a,thn n~n

a n and therefore
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For example, if the spectral index is αth=− 2, we obtain that
Lν∝ t11.2m−13.2 in the slow-cooling regime. Even for very mild
deceleration this implies a very steeply declining light curve (e.g.,
Lν∝ t−3 for m≈ 0.9). Steeper spectral indices and/or stronger
deceleration yield light curves that decay more abruptly.

6. Discussion

In this work we studied the implications of a thermal electron
population on subrelativistic shock-powered synchrotron
transients. The existence of a thermal electron population is a
natural expectation in shock scenarios, yet has garnered little
attention in the context of synchrotron transients. We find that
neglecting thermal electrons is reasonable only for nonrelati-
vistic shocks where βsh= 1. Much of the canonical synchro-
tron transient literature was derived for radio SNe where this is

applicable, however, the situation is markedly different for
mildly relativistic shocks (Figure 2). If dominant, thermal
electrons can be discerned by their tell-tale steep optically-thin
spectrum (Equation (22)) and a comparatively shallow ν2 self-
absorbed spectrum (Figure 1). Another general prediction of
the thermal electron model is a steep decay of the light curve
shortly after peak, and a correlation between the spectral and
temporal indices (Figure 3; Equation (38)). In typical settings,
these effects should be most prominent at early times and at
high frequencies.
As is common in the literature (e.g., Chevalier 1998), we

have worked here within the framework of a “one-zone”
model. This approach effectively assumes a spherically
symmetric uniform radiating region of size R. Spatial
inhomogeneities in the electron density, magnetic field, or
other parameters may affect various aspects of our results. In
particular, these can act to soften the optically-thick spectral
slope, leading to deviations from the ν2 (ν5/2) thermal
(nonthermal) prediction. Indeed, observed radio SNe rarely
exhibit optically-thick spectra as steep as these one-zone model
predictions, and this discrepancy is typically understood as a
consequence of spatial inhomogeneities (e.g., Björnsson &
Keshavarzi 2017). Such effects can also impact aspects of the
synchrotron cooling break, as recently discussed by Cristofari
et al. (2021).
The physical processes that determine the postshock

electron temperature are a matter of ongoing investigation,
but it is generally recognized that plasma instabilities must
mediate electron–ion energy exchange.8 PIC simulations
of both relativistic and subrelativistic electron–ion shocks
generically show a quasithermal downstream electron popula-
tion that shares an order-unity fraction of the downstream
energy (òT∼ 1) and that exceeds the energy in the diffusive-
shock-accelerated power-law tail (δ= 1; Sironi & Spit-
kovsky 2011; Park et al. 2015; Crumley et al. 2019; Tran &
Sironi 2020). In our present work we have assumed that this
quasithermal population can be modeled by a relativistic
Maxwellian (Equation (4)), i.e., that it is “perfectly” thermal.
We expect that modest deviations from a pure Maxwell–Jüttner
distribution would not affect our main conclusions, but
may quantitatively change various estimates. In particular,
our results are sensitive to the high-energy tail of the
thermal distribution, which contributes most to emission at
frequencies? νΘ of interest. For example, if we generalize
Equation (4) to ( ) ( )dn d eth

ng µ g- Q where n= 1 for a standard
Maxwellian, then the high-frequency thermal synchrotron
spectrum would scale as

( )
L e A xn

n n 2µn
- +

with An= [1+
(n/2)2/n](2/n)n/(n+2) (compare with Equation (13)). This may
affect quantitative values of νj, να, νa,th, and νcool,th

9

(Equations (24)–(29)) but should not change our overall
findings.
Our study was motivated by steep spectra and light curves

observed in several AT2018cow-like events and by the work of
Ho et al. (2021) that first suggested a thermal-electron
interpretation of this data. Here we addressed several questions
that arise from such an interpretation. We showed that thermal

8 The timescale for electron–ion equilibration through Coulomb collisions is
typically too slow, ( )t n200 yr ln 30b

ei 5
1 1~ Q L- - where ln L is the Coulomb

logarithm, b = 3/2 for Θ = 1 (Spitzer 1956) and b = 1 for 1 = Θ = mp/me
(Stepney 1983).
9 The cooling frequency of the thermal population would in this case be

( )( )x n 2 n
cool,th cool

2g~ Q + , affecting Equations (20) and (24).
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electrons are naturally expected to govern peak emission for
mildly relativistic shocks with βsh 0.2 (Figure 2 and
Equation (34)). Conversely, thermal electrons would be
subdominant for nonrelativistic shocks. This explains the
dichotomy between AT2018cow-like events and typical radio
SNe (Figure 2). Furthermore, we showed that the synchrotron
optical depth at frequency ∼νΘ at which most thermal electrons
emit is ?1 for subrelativistic shocks (Equation (27)). This
implies that a “bare” (unabsorbed) Maxwellian should not be
observed for such shocks, and helps explain why the SED peak
in AT2018cow-like events is inferred to be ( )100~ times
above νΘ (Ho et al. 2021). The thermal optical depth

R e x
,th

1.8899 1 3a tá ñ µn Q
- is exponentially sensitive to fre-

quency, which acts to regulate the self-absorption frequency
to ( )x 100a,th ~ over many orders of magnitude in τΘ
(Equation (28)).

In addition to shock velocity, a second important parameter
that determines the contribution of thermal electrons to observed
emission is the ambient density. At a fixed shock velocity, the
density sets the downstream magnetic field (Equation (9)) and
therefore governs the frequency νj belowwhich thermal electrons
dominate observed emission (Figure 1). Using the rough
approximation xj≈ 150δ−0.25 (see text below Equation (25)) and
Equation (11), this critical frequency is

( ) ( )n3 GHz 0.01 . 39j T B
2

, 1
1 2

5
1 2

1
5 0.25 n b d» - -

-

At frequencies ν> νj emission is dominated by nonthermal
electrons and the presence of thermal electrons would be
undetectable.

Equation (39) shows that νj falls in the GHz–mm band for
high-density, high-velocity shocks relevant to AT2018cow-like
events. Although this class of events has been our primary
focus in this work, our results would apply to subrelativistic
shocks in any other astrophysical setting as well. For example,
BNS mergers eject ∼10−2Me of material at velocities 0.1c,
and it has been suggested that the forward shock between
this ejecta and the ambient interstellar medium (ISM)
would produce detectable synchrotron radio emission (e.g.,
Nakar & Piran 2011; Margalit & Piran 2015, 2020; Hajela
et al. 2021). This has typically been studied using standard
power-law electron models, however—as we have shown—
thermal electrons may contribute appreciably for mildly
relativistic shocks. This contribution is limited to low frequencies

( )n300 MHz 0.2j B, 1
1 2

0
1 2

sh
5n n b< » - (Equation (39)) which

may hinder detectability prospects, especially considering that
the ambient ISM density is likely to be significantly lower than
the optimistic value assumed above (e.g., Fong et al. 2015; Hajela
et al. 2019). Nevertheless, our estimate motivates late-time
follow-up of BNS mergers at particularly low frequencies in
order to test the thermal-electron hypothesis. Furthermore, if the
merger manages to produce a “long-lived” magnetar remnant,
then energy injection may accelerate the BNS-merger ejecta to
transrelativistic velocities (Metzger & Bower 2014; Fong et al.
2016; Horesh et al. 2016; Margalit & Metzger 2019; Schroeder
et al. 2020), implying much higher frequencies up to which
thermal electrons may contribute noticeably (Equation (39)).

GRB afterglows could show signs of thermal electrons, as
first discussed by Giannios & Spitkovsky (2009). GRB
outflows are initially ultrarelativistic and collimated, however,
shock deceleration leads the outflow to a quasispherical
subrelativistic state at sufficiently late times. At such epochs,
our current formalism applies (see Ressler & Laskar 2017 for

treatment of the ultrarelativistic regime) and we estimate
( )E n t2.7 GHz yrj B, 1

1 2
50 0

1 2 3n » -
- - for δ= 0.01, and for a

GRB of total energy E= E5010
50 erg that is deep within the

Sedov–Taylor regime. Observations at low frequencies ν< νj
would be required to potentially distinguish the thermal-
electron model from a purely power-law electron distribution.
Since the critical frequency νj drops rapidly with time, the most
opportune window would be to observe shortly after the shock
enters the mildly relativistic regime (the earliest epoch at
which our subrelativistic results apply). Thermal electrons
may also be relevant to other astrophysical settings in which
mildly relativistic shocks are present. This may apply to jetted
tidal-disruption events such as the prototypical Swift J1644
(Bloom et al. 2011; Burrows et al. 2011; Zauderer et al. 2011;
Eftekhari et al. 2018), to low-luminosity GRBs (e.g., Kulkarni
et al. 1998; Tan et al. 2001; Barniol Duran et al. 2015), and
perhaps to more exotic scenarios such as outflows from
accretion-induced collapse (e.g., Dessart et al. 2006; Darbha
et al. 2010).
The most important quantity that governs thermal electron

emission is the postshock electron temperature Θ. In our
current model, this is set uniquely by the shock velocity
(Equations (2), (3)), however, additional processes may impact
this result. For example, inverse-Compton scattering off
external (or self-produced) photons could potentially cool
postshock electrons (e.g., Katz et al. 2011; Margalit et al.
2021), though this would have to act over extremely short
timescales to compete with kinetic instabilities and regu-
late Θ.10

We have worked here under the simplest hypothesis that the
thermal and nonthermal electrons can be adequately described
by fixed values of the parameters òT, δ, and p. The microphysics
that sets these parameters may in reality be more complex. For
example, the strength of the power-law component δ (which
is∝ òe in standard notation11) may itself be affected by the
shock velocity. PIC simulations have found that òe∼ 0.1 for
ultrarelativistic electron–ion shocks (Sironi & Spitkovsky 2011)
while òe∼ 10−4 for nonrelativistic shocks (Park et al. 2015)
and a trend of increasing òe with shock velocity has been
suggested (e.g., Crumley et al. 2019). If this trend is correct,
then the parameter space in Figure 2 where thermal electrons
contribute appreciably would expand and encompass even
lower-velocity shocks. This would improve prospects for
detecting emission from such thermal electrons, but may
already be at odds with observations of events straddling the
two regions.
The shock Mach-number and magnetic-field orientation can

further affect diffusive shock acceleration and impact δ and/or p.
For example, shocks where the magnetic field is perpendicular to
the shock velocity are thought to be less efficient at accelerating
nonthermal particles (e.g., Sironi & Spitkovsky 2009) and may
produce more prominent thermal downstream distributions, i.e.,
δ= 1 (although see Xu et al. 2020; Kumar & Reville 2021). This
would again expand the range of parameters where thermal
electrons must be considered.

10 Separately from this, inverse-Compton scattering may affect the cooling
break (Equation (18)) if the radiation energy density is  B2/8π.
11

δ = òe/òT if òe is defined using energy of power-law electrons with γ � γm
(Equation (6)). In practice, òe is often measured starting at some higher Lorentz
factor γt (e.g., at the transition between thermal and nonthermal populations, as
in Giannios & Spitkovsky 2009). In this case δ would be a factor ( )t m

p
T

2 1g g - -

larger than òe.
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The above uncertainties in microphysics (that are in any case
not considered in typical modeling of synchrotron transients)
should not be considered detrimental to the thermal +
nonthermal model. In fact, we view these as an important
opportunity—our model provides a direct means of measuring
the acceleration efficiency δ and therefore constraining
microphysical processes using observations. Such direct
measurement is possible if one observes the transition
frequency νj (Equation (39)) at which emission changes from
thermal to power-law-dominated (or similarly by detecting να
in the SSA regime). Ho et al. (2021) have already used this
method to infer that δ< 0.2 for AT2020xnd.

Finally, we note that the thermal + nonthermal synchrotron
model presented here includes no additional physical para-
meters compared to standard nonthermal synchrotron models
that are typically used to model observations. At a given epoch,
the frequency-dependent spectral luminosity is fully specified
by three physical parameters, R, βsh, and n, and three
microphysical parameters, òB, δ, and p (insofar as òT∼ 1,
which is well motivated in the simplest version of this model).
The same parameters are also required in standard nonthermal
synchrotron modeling (with òe replacing δ). The fact that this
model is capable of fitting more complex spectra (see Ho et al.
2021) with no additional degrees of freedom is another strength
of this scenario. In the Appendix we provide analytic
expressions (that are applicable in a subset of the parameter
space) and a link to the code used in our analysis (applicable
for any subrelativistic shocks). These may be convenient for
future studies, and in particular for fitting observed data to the
model presented in this work.

We thank Anna Ho for helpful comments and discussions on
AT2020xnd, AT2018cow, and radio SNe, and Lorenzo Sironi
and Anatoly Spitkovsky for useful discussions about collision-
less shocks. B.M. is supported by NASA through the NASA
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by the Space Telescope Science Institute, which is operated by
the Association of Universities for Research in Astronomy,
Inc., for NASA, under contract NAS5-26555. E.Q. was
supported in part by a Simons Investigator grant from the
Simons Foundation.

Appendix
Fitting the Model to Observed Data

The code used in this analysis is publicly available at
https://github.com/bmargalit/thermal-synchrotron. It is designed
to be imported as a python module and can easily be used to
calculate the specific luminosity (Equation (21)) for any set of
parameters. This may be particularly useful for fitting observed
data to the thermal+ nonthermal model described in this work. In
the following, we also provide analytic expressions that can be
used to fit observed light curves and SEDs in the reduced case
where Θ 1. For concreteness, we also choose p= 3 in the
expressions below (the linked code can be used for arbitrary values
ofΘ and p). In these limits, the specific luminosity (Equation (21))
can be expressed as

( ) ( )
( )

( )
( )

( )

L p L xI x
z

x

x
z

x

e

x

3 min 1,
0.5

9.674 min 1,
1

A1
x

1

cool
1 3

1 cool
1 2

⎜ ⎟
⎡
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⎛
⎝
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⎛
⎝

⎞
⎠

⎤
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n

d
t

= ¢

+ ´
-

n

t

Q

=

Q

-
-

where x≡ ν/νΘ is the normalized frequency (Equation (11)),
LΘ is a normalization constant, ( )I x¢ is given by Equation (13)
see also (Mahadevan et al. 1996),

( ) ( )
( )

( )

x x I x
z

x

x
z

x

min 1,
0.5

47.37 min 1, A2

1 cool
1 3
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1 2
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⎡
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⎝

⎞
⎠

⎛
⎝
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⎠

⎤
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t t

d

= ¢

+ ´

Q
-

-

is the frequency-dependent optical depth∝ τΘ (Equation (27)),
and zcool≡ γcool/Θ is related to the synchrotron cooling break
(Equation (18)). Equation (A1) can be fit to observed spectra as
a function of the five parameters: LΘ, τΘ, νΘ, δ, and zcool. These
may subsequently be related to the shock velocity βsh,
upstream density n, and radius R using Equations (11), (27),
and (21),
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Note that the three parameters LΘ, τΘ, and νΘ are sufficient to
fully specify the physical shock parameters. If the power-law
electron distribution does not impact observed frequencies (ν< νj)
then δ can effectively be set to δ= 0. Similarly, if fast cooling is
irrelevant at frequencies of interest (ν< νcool) then one can
effectively set zcool→∞ . In these cases, Equations (A1) and (A2)
reduce to a form similar to that used by Ho et al. (2021) in fitting
the SEDs of AT2020xnd, AT2018cow, and CSS161010.
Alternatively, if the cooling-break parameter zcool can be
constrained by the SED fit then the expressions above can
be combined with Equation (18) to directly measure the
microphysical parameter òB,

( )
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Similarly, if power-law electrons contribute to observed
emission then the microphysical parameter δ may be directly
constrained by fitting Equation (A1) to the data.
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