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Abstract 
 

In this paper, the conventional backward differentiation formulae methods for step numbers k = 3 and 4 
were reformulated by shifting them one-step backward to produce two and three approximate solutions 
respectively, in a step when implemented in block form. The derivation of the continuous formulations of 
the reformulated methods were carried out through multistep collocation method by matrix inversion 
technique. The discrete schemes were deduced from their respective continuous formulations. The 
convergence analysis of the discrete schemes were discussed. The stability analysis of these schemes 
were ascertained and the P- and Q-stability were also investigated. When the discrete schemes were 
implemented in block form to solve some first order delay differential equations together with an accurate 
and efficient formula for the solution of the delay argument, it was observed that the results obtained from 
the schemes for step number k = 4 performed slightly better than the schemes for step number k = 3 when 
compared with the exact solutions. More so, on comparing these methods with some existing ones, it was 
observed that the methods derived performed better in terms of accuracy. 
 

 
Keywords: Delay differential equations; reformulated block method; backward differentiation formulae; 

continuous formulations. 
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1 Introduction 
 
Many real life problems encountered in the various branches of science, medicine and engineering give rise 
to ordinary differential equations (ODEs) of the form, 
 

'( ) (t, y)y t f  ,        0( ) ,y a y  a t b                                                                               (1) 

 
This has been used to model the above physical phenomena since the concept of differentiation was first 
developed and nowadays complicated ODE models can be solved numerically with a high degree of 
confidence. However it was observed that some phenomena may have a delayed effect and the models 
described by (1) would be more realistic if some of the past history of the system is included in them, 
leading to what is called delay differential equations (DDEs) of the form: 
 

' ( ) (t, y, ( )),

( ) ( )

y t f y t

y t t





 


    

0

0

, 0t t

t t

 


                                                                                  (2) 

 

where ( )t  is the initial function, ( , ( ))t y t is the delay or constant lag,   ( , ( ))t t y t  is the delay term 

and ( ( , ( )))y t t y t is the solution of the delay term. 

 
Delay differential equations are similar to ordinary differential equations, but their evolution involves past 
values of the state variable. The solution of DDEs requires the knowledge of not only the current state, but 
also of the state at a certain time previously. An obvious distinction between a DDE and an ODE is that 

specifying the initial value 0( )y t   is not enough to determine the solution for 0t t   it is necessary to 

specify the history ( )y t  for    0t t  in the differential equation even to be defined for 0t t  . 

Most of the numerical methods that have been developed to solve ODEs namely, the Runge-Kutta type of 
methods and multistep methods have also been used to solve DDEs together with their interpolation 
techniques by some researchers such as in [1-4]. All of these methods produce only one approximate 
solution in an integration step. Another approach that has gained interest recently is block methods. Block 
methods produce more than one approximate solution in a step [5-6]. Also using block methods greater 
efficiency is obtained since total number of steps taken will be reduced. 
 

In this research, the reformulated block backward differentiation formulae (BDF), presented as a simple 
form of linear multistep methods would be used to solve DDEs. The block methods will be implemented 
using fixed step size and the delay term will be approximated without using the well-known interpolation 
techniques such as Hermite, Nordsieck, Newton divided difference, Neville’s interpolation etc. According to 
[7], the order of interpolating polynomials used should be at least the same as that of the numerical method 
to preserve the desired accuracy. In order to circumvent this drawback, an accurate and efficient formula 
shall be proposed for approximating the delay term. 
 

1.1 Existence and uniqueness of solutions 
 

We shall state the theorem for existence and uniqueness solutions of (2) as in [8]. 
 

Theorem:- 
 

Consider (2) and assume that the function ( , , )f t u v  satisfies the condition 

( , , ) ( ) ( )( )f t u v M t N t u v    in 0[ , ) d d
nt t     ,where ( )M t  and ( )N t  are 

continuous positive functions on 0[ , )nt t , then the solution of (2) exist and is unique on the entire interval 

0[ , )nt t . 



 
 
 

Sirisena and Yakubu; JAMCS, 32(2): 1-15, 2019; Article no.JAMCS.48662 
 
 
 

3 
 
 

Consider the sequence of points { }nt defined by 0 ,nt t nh   1, 2,..n   where the parameter, h is 

called the step size, a vital property of the most numerical methods for the solution of (2) is that of 

discretization i.e. an approximate solution is sought not on the continuous interval 0 nt t t   but on the 

discrete point set 01 2| , ,..., n

n
h

t t
t n

 
 

 
 .  

 

2 The Reformulated Method 
 
In this section, the continuous formulations of the reformulated BDF methods for step numbers k = 3and 

4 will be derived using multistep collocation method of [9].  
 

2.1 The multistep collocation method 
 
In [8], a k-step multistep collocation method with m collocation points was obtained as      
     

1 1

0 0

( ) ( ) ( ) ( , ( ))
t m

j n j j j j
j j

y x x y h x f x y x 
 


 

                                                     (3) 

 

where ( )j x and ( )j x  are continuous coefficients of the method defined as                            
 

1

, 1
0

( )
t m

i
j j i

i

x x 
 




   for 0,1,..., 1j t                                                                               (4) 

 

1

, 1
0

( )
t m

i
j j i

i

h x h x 
 




  for 0,1,..., 1j m                                                           (5) 

 

where 0 1, , mx x  are the m collocation points and n jx   , j = 0, 1, 2, …, t – 1 are the t arbitrarily 

chosen interpolation points. 
 

To get ( )j x  and ( )j x , [9] arrived at a matrix equation of the form 

 

DC = I                                                                                        (6) 
 

where I is the identity matrix of dimension ( ) ( )t m t m    while D and C are matrices defined as     
 

 

 

  

 

     

 

 

 



 

 

 
 
 
 
 
 
 
 
 
  





    





    



2 1

2 1

1 1 1

2 1

1 1 1

2

0 0

2

1 1

1

1

1

0 1 2 ( 1)

0 1 2 ( 1)

t m

n n n

t m

n n n

t m

n t n t n t

t m

t m

m m

x x x

x x x

D x x x

x t m x

x t m x

                                           (7) 
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0 ,1 1,1 1 ,1 0 ,1 1 ,1

0 ,2 1 ,2 1 ,2 0 ,2 1 ,2

0 , 1 , 1 , 0 , 1 ,

t m

t m

t m t m t t m t m m t m

h h

h h

h h

C                             (8) 

 

It follows from (6), that the columns of C = D-1 give the continuous coefficients of the continuous scheme 
(3). 
 

2.2 Derivation of continuous formulation of reformulated block backward 
differentiation formulae method for k = 3  

 

Using the idea of [9], we choose 3t   interpolation points at 1, 0,1,n j jx    and 1m   collocation 

point at 2.nx   Then (3) takes the form 
 

1 1 0 1 1 2 2( ) ( ) ( ) ( ) ( )nn n ny x x y x y x y h x f                                                 (9)  
 

and the matrix D in (7) becomes  
 

D =                                                                    (10)            

   

 
 

The columns of the C = D-1 obtained using Maple 18 are used in (4) and (5) to yield the continuous 
coefficients of the method. Substituting these coefficients into (9) gives  
 

 

+                   (11)  

 

Next evaluating (11) at 2nx x   and its derivative at 1nx x  , the reformulated block BDF for 3k   

is obtained as:    
 

     

                                  (12) 

 

2.3 Derivation of continuous formulation of reformulated block backward 
differentiation formulae method for k = 4  

 

With the interpolation points at 1, 0,1, 2,n j jx     and the collocation point at 3,nx   (3) and (6) become 

respectively.  
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1 1 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )nn n n ny x x y x y x y x y h x f                       (13) 

 
and       
 

D =                                       (14) 

 
 
Similarly, the continuous formulation (13) becomes 
 

 

 

         

 

        (15) 

 

and evaluating (15) at 3nx x  ,  and its derivative at 1 2,n nx x x  , the reformulated block BDF for 

4k  is obtained as  
 

 

 

  

 

   (16) 

 

3 Convergence Analysis 
 
In this section, the order, error constants, consistency and zero stability of the derived discrete schemes shall 
be examined. 
 

3.1 Order and error constants 
 
The order and error constants of the discrete schemes in (12) are found in block form as follows: 
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2

2

2

2

0 1 0 1 2

1 1 1 2 1 0 1

2 1 1 2 1 1

3 1 1 2 1 1

4 1 1 2 1 1

1 1

2 2

1 1 4 1 1

6 6 3 2 2

1 1 2 1 1 4

24 24 3 6 6 3

17
138

3
22

0

0

0
2

0

0
2 2

0

0
2

0

C

C

C

C

C

   

      

     

     

     



 

 

 

  

 
      

 

 
          

 

 
         

 

 
         

 

 
        
 
  

 

 

Therefore, (12) has order, 3p  and error constants   317
138 22,  

 
Similarly, the order and error constants of the discrete schemes in (16) are found in block form as follows: 
 

2 3

2

2

0 1 0 1 2 3

1 1 1 2 3 1 0 1

2 1 1 2 3 1 1 3

3 1 1 2 3 1 1 3

4 1

1 1 9

2 2 2

1 1 4 9 1 1 9

6 6 3 2 2 2 2

1

24

0

0

0

0

2 3 0

0

0

2 2 3 0

0

0

2 0

0

C

C

C

C

C

    

        

       

       





 

 

 



 
      
 
  

 
             
  

 
            
  

 
            
  

 

   

2

2

1 2 3 1 1 3

5 1 1 2 3 1 1 3
111

1970
12

125

31
90

1 2 27 1 1 4 9

24 3 8 6 6 3 2

1 4 8 1 2 27

120 15 40 24 3 8

0

0

0

C

      

       



 





 
        
 
  

 
 

           
 
  

  

 

Therefore, (16) has order,  4p  and error constants   31 111 12
90 1970 125

,,  

 

3.2 Consistency 
 
All the schemes in (12) and (16) have their orders greater than one, so as in [10], the schemes are consistent. 
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3.3 Zero stability   
 
 The zero stability of the discrete schemes in (12) is determined in a block form as follows 
 

1

2

5 28
3 25 1

18 92
11 11 11

1 0

1
n

n

n

n

y

y

y

y




     
      

      




 1 1

2

22 4
23 23

6
11

0 0

0 0 0
n n

nn

h h
f f

f f
 




     

     
    



 
   

where 
(1) (1)

2 118
11

5 28
3 25

92
11 11

,
1 0

1
A A 

  
       




 and 
(1)

2
B   

22 4
23 23

6
110

 
 
 



 
 

The first characteristics polynomial of the block method of the discrete schemes in (12) is given by 
 

(1) (1)

2 1
( ) det( ) 0p A A      

        
(1) (1)
2 1A A    

            = 0  
 

Now we have, 
 

5 28
3 25

18 92
11 11 11

5 28
3 25

18 92
11 11 11

( )
1 0 0

1
 




 


     
                    




 




                 

 

2 29
25

538
825

5 28
3 25

18 92
11 11 11

0( )


  
 

  
 

 
  

 ,  

 

1
269 14
825 825

3659i      and  2
269 14
825 825

3659i    

 

 1 1   and 2 1  , but 1 2   

 

Then we observe that the discrete schemes in (12) satisfies the root condition and hence zero stable as in 
[10]. 
 

Similarly, the zero stability of the discrete schemes in (16) is determined in block form as follows:    
 

                    

1 2

2 1

3

297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 0

1 0

n n

n n

n n

y y

y y

y y

 

 





 

 

     
     
     

     
     

    

 

              

1 2

2 1

3

25 1
3 3

150 18
197 197

12
25

0 0 0 0

0 0 0 0

0 0 0 0 0

n n

n n

n n

h h

f f

f f

f f
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where      
( 2)

2
A   

( 2)

1

297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 , 0

1 0

A



 

 

   
   
   

  
  

 

and        
( 2)

2
B   

25 1
3 3

150 18
197 197

12
25

0

0

0 0



 
 
 
 
 

 

 
The first characteristics polynomial of the block method of the discrete schemes in (16) is given by 
 

(2) (2)

2 1
( ) det( ) 0p A A      

        
(2) (2)

2 1A A    

            = 0  
 
Now we have, 
 

38 7
9 9

297 297 17 99
197 197 97 197

48 36 48 3 16
25 25 25 25 25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 0

1 0

( )

0 0 6

0 0

0

 

 

 

  



    

 

      
             

             

                

297 17 99
197 197 197

36 16
25 25

38 7 1
9 9 3

2

48 3
25 25

1451 1642 29
197 197 197

3( ) 0





 



  



  


 





    

 

   

1
821 14

1451 1451
7802   , 2

821 14
1451 1451

7802   and 3 0    

1 1  , 2 1   and 3 1  . Since 1i    , i = 1, 2, 3,   then we observe that the discrete schemes  

in (16) satisfies the root condition and hence zero stable as in [10]. 
 

3.4 Convergence 
 
The block discrete schemes methods in (12) and (16) are convergent as in [10], since they are both consistent 
and zero-stable. 
 

4 Stability Analysis 
 
In this section, the stability analysis of derived methods as it regards to P- and Q-stability will be 
investigated by means of the following test equation. 
 

' ( ) (t) + ( ),

( ) ( ),

y t y y t

y t t

  



 


                

0

0

t t

t t




                                                                           (17) 

 
 

where ( )t is the initial function ,   are complex coefficients and h is the step size. 



 
 
 

Sirisena and Yakubu; JAMCS, 32(2): 1-15, 2019; Article no.JAMCS.48662 
 
 
 

9 
 
 

Then from the discrete schemes in (12),  
 

let   
2

1

2
N

n

n

Y
y

y






 
  
 

, 
2

11

2

,
N N

nn

n n

f
F

f
Y

y
y 





  
     

   
   and 1

N

n

n

f
F

f


 
  
 



 
 

Since,     
(1) (1)

2 118
11

5 28
3 25

92
11 11

,
1 0

1
A A 

  
  
    






 and 

(1)

2
B   

22 4
23 23

6
110

 
  
 


  

 

we have,   

2
(1) (1) (1)

2 2 1 1

1

N N i N i

i

A Y A Y h B F
  



                                                                                       (18) 

 
Also from the discrete schemes in (16),  
 

let  
3 3

1 2 1

2 1 2

3 3

, ,
N N N

n n n

n n n

n n n

f

Y Y F f

f

y y

y y

y y
 

  

  

 

  

     
     
     
     
     

 and 
2

1N

n

n

n

f

F f

f





 
 
 
 
 

 

Since,      
(2)

2
A   ( 2)

1

297
197

48
25

7
9

17 99
97 197

36 3 16
25 25 25

38
91 0 0 6

1 0 , 0

1 0

A



 

 

   
   
   

  
  

 and 
(2)

2
B   

25 1
3 3

150 18
197 197

12
25

0

0

0 0



 
 
 
 
 

    

 

we have,   

2
(2) (2) (2)

2 2 1 1

1

N N i N i

i

A Y A Y h B F
  



                                                                       (19)  

 

According to [7], the P- and Q-stability polynomials are obtained by applying (18) and (19) to (17). Thus the 
P-stability polynomials for the discrete schemes in (12) and (16) are given respectively by: 
 

2
(1) (1) (1) 2 (1) (1) 1 (1)

2 1 2 1 1 1 2
1

( ) det ( ) ( )
ir r

i
i

A H B A H B H B     



 
     

 
    

 

and   
 

 

2
(2) (2) (2) 2 (2) (2) 1 (2)

2 1 2 1 1 1 2
1

( ) det ( ) ( )
ir r

i
i

A H B A H B H B     



 
     

 
 . 

 

Also the Q-stability polynomials for the discrete schemes in (12) and (16) are given respectively by  
 
 

2
(1) (1) 2 (1) 1 (1)

2 1 2
1

( ) det
ir r

i
i

A A H B     



 
   

 
   

 
and 
 

2
(2) (2) 2 (2) 1 (2)

2 1 2
1

( ) det
ir r

i
i

A A H B     



 
   

 
 , 
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where 
h

r    , 1H h  and 2H h .  Using Maple 18 and MATLAB the P- and Q-stability 

regions for r =1 for the schemes (12) and (16) are shown in Figs. 1 to 4. 
 

 
 

Fig. 1. The P-stability region of the schemes in (12) 
 

 
 

Fig. 2. The P-stability region of the schemes in (16) 
 

 
 

Fig. 3. The Q-stability region of the schemes in (12) 
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Fig. 4. The Q-stability region of the schemes in (16) 
 

From Figs. 1 and 2, it is observed that the P-stability region of the schemes in (12) is about the same with 
that of the schemes in (16). Also from Figs. 3 and 4, it is observed that the Q-stability region of the schemes 
in (12) is larger than that of the schemes in (16). Note that in Figs. 1 and 2, the P-stability regions lie inside 
the open ended region while in Figs. 3 and 4, the Q-stability regions lie inside the enclosed region. 
 

5 Implementation 
 
The corresponding values of nf (t , y, ( )),n nf y t  where f is the function, were substituted using the 

discrete schemes in (12) and (16) with an accurate formula of the form. 
 

( ) (( ) )n jp t p n j r h                                                                                                           (20) 

 

where  ,k kj  , k  is a step number, 
h

r    , 0,1, 2, , 1n N    and N is the number of 

solutions in the given interval, is implemented to approximate the delay term at the point nt t    using 

previous values of ( )n jp t   at 0nt t   whenever 0nt t  , where ( )n jp t  is the 

approximation to ( )ny t  .The results of the above are obtained in block form using Maple 18 varying 

0,1, 2, , 1n N   and evaluating the values of ny  

 

6 Numerical Results 
 
In order to study the performance of the discrete schemes in (12) and (16) together with the formula (20), we 
present some numerical results for the following problems: 
 

Problem 1 
 

( 25)' 24 ( 1),( ) ( ) y ty t y t e          0 3t     

( 25) 0( ) ,t ty t e               
 

Exact Solution  
( 25)( ) ty t e    
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Problem 2 
 

3 3' ( 1) (1000 ),( ) 1000 ( ) 997 997y ty t y t e e           0 3t     

 
3 0( ) 1 ,t ty t e                

 

Exact Solution  
3( ) 1 ty t e     

 
Problem 3 
 

' ( (ln(1000 1))),( ) 1000 ( ) y ty t y t          0 3t     

 

0( ) ,t ty t e               

 

Exact Solution  ( ) ty t e   
 
Problem 4 
 

1 1' ( ) cos( ),( ) ( ) sint tt e ty t y t e              0 3t     

 

0( ) sin( ),ty t t              

 

Exact Solution  ( ) sin( )y t t  
 
Problem 5 
 

' cos( )( ( ( ) 2))( ) t y y ty t       0 3t     

 

0( ) 1,ty t              

 

Exact Solution  ( ) 1 sin( )y t t   

 
The above problems were also solved using the schemes in [9], which are obtained by shifting Reformulated 
Block BDF methods one step forward, together with the formula (20). The results obtained are summarized 
in the Tables 1 to 5 and the notations used in the tables are as follows:  
 
h                                                Step size 
TS                                              Total steps taken 
MAXE                                        Maximum Error 
2BBDF                                       Implicit 2-point Block BDF method in [11] 

CBBDF                                      Conventional Block BDF method for step number 2k  in [9] 

CBBDF*                                     Conventional Block BDF method for step number 3k  in [9]  

RBBDF                                      Reformulated Block BDF method for step number 3k    

RBBDF*                                     Reformulated Block BDF method for step number 4k   
 
The maximum error MAXE is a highest value of the absolute error for total number of steps taken. 
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Table 1. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using problem 1 
 

h Method TS MAXE 
210

  
 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

4.41E-02 
1.58E-03 
3.47E-03 
3.36E-04 
2.56E-04 

310
  

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1500 
1000 

9.28E-04 
2.33E-06 
1,89E-06 
1.73E-07 
1.12E-07 

410
  

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

9.97E-06 
8.62E-07 
6.73E-07 
7.56E-08 
5.00E-08 

 

Table 2. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using problem 2 
 

h Method TS MAXE 
210   

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

3.41E-03 
6.32E-06 
5.10E-07 
1.54E-09 
1.04E-09 

310
  

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1500 
1000 

2.34E-06 
5.40E-07 
4.18E-08 
3.02E-09 
2.56E-09 

410
  

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

1.20E-07 
4.78E-08 
1.22E-08 
9.90E-09 
7.36E-09 

 

Table 3. Comparison between 2BBDF, CBBDF, CBBDF*, RBBDF and RBBDF* using problem 3 
 

h Method TS MAXE 
210   

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
150 
100 

3.80E-04 
8.96E-05 
9.39E-06 
4.88E-06 
4.38E-06 

310
  

 

2BBDF 
CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1500 
1000 

2.61E-07 
3.12E-08 
1.43E-08 
7.52E-09 
7.02E-09 

410
  

 

2BBDF 
CBBDF 
CBBDF 

RBBDF 
RBBDF* 

15000 
15000 
15000 
15000 
10000 

1.34E-08 
1.27E-08 
8.40E-09 
4.26E-09 
3.70E-09 
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Table 4. Comparison between CBBDF, CBBDF*, RBBDF and RBBDF* using problem 4 
 

h Method TS MAXE 
210

 
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
100 

1.66E-05 
2.22E-07 
1.61E-07 
1.54E-08 

310  
 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1000 

2.71E-07 
3.21E-08 
1.28E-08 
2.58E-09 

410
 

 

CBBDF 
CBBDF 

RBBDF 
RBBDF* 

15000 
15000 
15000 
10000 

7.23E-08 
5.56E-09 
2.67E-09 
3.31E-10 

 

Table 5. Comparison between CBBDF, CBBDF*, RBBDF and RBBDF* using problem 5 
 

h Method TS MAXE 
210   

 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

150 
150 
150 
100 

1.66E-05 
2.65E-07 
2.16E-07 
2.96E-08 

310
  

 

CBBDF 
CBBDF* 

RBBDF 
RBBDF* 

1500 
1500 
1500 
1000 

7.45E-07 
5.04E-08 
2.14E-08 
2.27E-09 

410
  

 

CBBDF 
CBBDF 

RBBDF 
RBBDF* 

15000 
15000 
15000 
10000 

1.51E-08 
2.54E-09 
1.33E-09 
4.30E-10 

 

7 Conclusion 
 
In this paper, it was observed that the results obtained from the schemes for step number k = 4 performed 
slightly better than the schemes for step number k = 3 when compared with the exact solutions. When 
comparing RBBDF with other existing methods, like CBBDF in [9] and 2BBDF in [11], it was observed that 
RBBDF achieved better results in terms of accuracy. Therefore it can be concluded that the Reformulated 
Block Backward Differentiation Formulae methods are suitable for solving Delay Differential Equations. 
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