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ABSTRACT 
 
The present study deals with the linear stability of an anisotropic porous medium in rotation, 
saturated by a non-Newtonian fluid in a rectangular cavity heated on the side, subjected to the effect 
of the centrifugal force. The state of marginal stability is established by determining the critical 
Rayleigh number and the critical wave number. We have observed the effect of the parameters 	�∗ 
and � of the anisotropy on the convection threshold. 
 

 
Keywords: Rotating anisotropic porous media; centrifugal force; linear stability; critical Rayleigh 

number; convection threshold. 
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NOMENCLATURES 
 
�	: Dynamic viscosity of the fluid saturating the porous medium 
�⃗ : Vector gravity field 
�� : Pressure of the saturating vapor 

��⃗ 	(0, 0, �) : Vector rotation speed of the enclosure 
�⃗� : Vector position 

�� : Third order permeability tensor 
� : Thermal capacity ratio 

��⃗  : Vector velocity of filtration of the fluid in the porous medium; 
∆� = �� − �� : Temperature difference between the two surfaces; 

�� =
�����

����∆�

��
: Number of Rayleigh for the centrifugal force; 

��;	�����		��: Components of the velocity vector respectively along the axes (�, �), (�, �)and (�, �) 
��	���	�� : Wave numbers describing the periodicity of the disturbance in the directions y and z 

respectively 

��
� + ��

� = ��: Wave number 

��� = �
1	�ℎ��		� = �
0	�ℎ��			� ≠ �

�   and  ����,���� = �
1	�ℎ��		� + �		��	��	���	������
0	�ℎ��		� + �		��	��	����	������

� the Kronecker 

� = ����� + �∗�����	; � = ����� + �∗�����		 and 		� =
�

�
(	�∗ − 1)	���2�	: Elements of the inverse of 

the permeability tensor 
�	: Angle of orientation of the main directions of the permeability tensor 
��, ��		���		��: Permeabilities along the main directions 
	�∗ = �� ��⁄ 	���			� = �� ��⁄ : Permeability anisotropy ratio 
�: Density of the fluid 
��̂; 	��̂		���	��̂ : Unitary vectors in the main directions 

 

1. INTRODUCTION 
 
The present paper deals with the study of linear 
stability in a rotating anisotropic porous medium 
saturated by a viscoelastic fluid, heated from 
below. The study of viscoelastic fluids is of great 
interest in many fields of modern engineering 
science and technology such as materials 
processing, petroleum, chemical and nuclear 
industries, geophysics, biology and of bio-
mechanical engineering [1,2,3]. 
 
Vadasz [4] carried out three-dimensional 
analytical research on the flow of a fluid through 
a heterogeneous porous medium confined in a 
rectangular cavity 0 ≤ � ≤ �; 	0 ≤ � ≤ � ; 	0 ≤ � ≤
�  in rotation. The permeability of the porous 
medium varies in the z coordinate direction. The 
results of his work show that for a pressure 
gradient applied to the faces �	 = 	0		and		�	 = 	�, 
a main flow of the fluid appears in the horizontal 
axis direction 		(�, 	���⃗ ) . The, analytical solution 
found remains valid for large numbers of Ekman 
(Ek), which confirms the conditions of practical 
applications. 
 
The same author has numerically investigated 
the effects of the centrifugal force resulting from 
the rotation of a rectangular cavity on the 

phenomenon of thermal convection in the porous 
medium confined in this chamber. He showed 
that for simple analytical solutions, the geometric 
shape ratio  where �  is the height of the 
enclosure and L the length of the rectangular 
domain, greatly influences the flow and heat 
transfer depends on the number of modified 
Rayleigh ���  which must remain low. He 
established that for the two-dimensional flow in 
the porous medium, the Nusselt number 
depends linearly on the number of modified 
Rayleigh ���with a slope function of the number 
"	�	" (geometrical shape factor of the domain). 
The author has also investigated an analytical 
solution to the problem of natural convection 
generated by centrifugal force in the porous 
medium contained in this rotating field and 
heated from above. For assuming the vertical 
component �  of the flow velocity and 
temperature T independent of the horizontal 
coordinate �	, � (�, �) 	= 	� (�)  and 		�(�, �) 	=
	�(�), it found that the range of validity of this 
analytical solution must be limited. The number 
of Nusselt varies linearly with the number of 
Rayleigh changes ���for low values of the latter. 
It emerges that apart from the heat flow 
associated with the flow of the fluid in the � 
coordinate axis direction which remains large, a 
heat flow in the vertical direction occurs. 
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Vadasz and Saneshan [5] carried out a 
numerical and analytical investigation on the two-
dimensional natural convection in isotropic 
porous medium in permeability confined in a 
rotating rectangular enclosure. The effect of 
centrifugal force on the development and stability 
of natural convection in a vertical porous layer 
exposed laterally to a constant flow of heat 
collinear to centrifugal force has been 
investigated [6,7]. 
 
Enock and Tyvand [8] on the basis of the Darcy-
Boussinesq equations for thermal convection in a 
rotating porous medium, studied the steady-state 
problem of two-dimensional convection in a 
rotating porous layer. They showed that this 
problem is equivalent to that of the porous 
anisotropic medium relative to a new 
dimensionless variable ζ, characterizing the 
permeability ratio of the medium. According to 
the results they obtained, one can deduce basic 
results on thermal convection in a porous layer in 
rotation from the analysis made on the thermal 
convection in anisotropic porous medium not put 
in rotation movement. 
 
Jong and Jian [9] studied transient thermal 
convection in a porous layer whose free upper 
and lower surfaces, initially at the same 
temperature��, are subjected to constant heating 
from below. 
 
Jong and Jian [9] have also studied analytically 
and numerically the criteria for the appearance in 
steady state and transient of the two-dimensional 
thermal convection in a rotating porous medium. 
The porous permeable anisotropic medium is 
such that its upper and lower boundary 
boundaries are rigid. The lower rigid wall is 
heated at a constant rate of heating so as to 
generate a linear distribution of the temperature 
in the vertical direction [10,1]. The instability 
related to the anisotropy permeability of porous 
regime, saturated with a fluid was analyzed by 
the technique of calculating the average flow 
volume [11,12]. They determined the critical 
Rayleigh numbers �� and critical wave numbers 
��  for the appearance of convection in the 
anisotropic medium. 
 
Govender [13] studied natural convection in an 
anisotropic porous spinning layer subjected to 
centrifugal force. He used Darcy's equation to 
describe the flow and found that convection is 
stabilized when the ratio of anisotropic thermal 
and mechanical parameters increases in 
amplitude. 

Nield and Bejan [14] have established 
comprehensive reviews of the fundamental 
principles of heat convection in porous          
media. 
 
Dègan [15,16] conducted a numerical and 
analytical investigation of natural convection in a 
rectangular cavity confined by a porous 
permeable anisotropic medium and isothermally 
heated by the sides. The main axes of the 
permeability are chosen inclined at an angle � 
with respect to the gravitational field. The results 
showed that the permeability anisotropy ratio 
�∗and the angle of inclination � of the principal 
axes both have a great influence on the system. 
In particular, the maximum (minimum) heat 
transfer is obtained when the orientation of the 
main axis of the porous anisotropic medium 
having the permeability is parallel (perpendicular) 
to the gravitational field. 

 
2. MATERIALS AND METHODS 
 

2.1 Description of the Physical Model 
 
The physical model considered in Fig. 1 is that of 
a parallelepipedic enclosure with flat walls. The 
lower horizontal wall is that symbolizing the pan 
which is heated by one of the side faces at a 
constant temperature ��  while the other side 
face is at constant temperature �� , such that 
(�� > ��). 
 
The cassava paste contained in the chamber 
constitutes a porous medium saturated with 
starch assimilable to a non-Newtonian fluid. The 
porous medium is anisotropic permeability whose 
directions are oriented obliquely to the vertical 
axis (Fig. 1). The porous-pregnant medium 
system is subjected to a maintained rotational 
movement of constant frequency N. 
 
As soon as the heating begins, the porous 
anisotropic medium is the site of thermo-
convective phenomena that we will study. 
 
2.2 Governance Equations 
 
The equations governing our system are written: 
 

��⃗ .V′���⃗ = 0                                                  (1) 
 

V′���⃗ =
��

�
�−��⃗ �′ +

�

�
ρ��⃗ �Ω��⃗ ˄r′��⃗ �

�
�                       (2) 

 

�
��′

��′
+ V′���⃗ .���⃗ �′�= α��T′                              (3) 
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Fig. 1. Rectangular rotating cavity and 
coordinate axes, containing the anisotropic 

porous medium 
 

2.2.1 Dimensionalization of the equations 
 

From the normalization scale, we have the 
following dimensionless variables: 
 

By introducing the following adimensioned 
variables: 
 

� =
� ′

�
; 	� =

� ′

�
; 	� =

�′

�
��
; � =

� ′

�
��
;														 

	� =
� ′

�
��
; 	� =

� ′ − ��
Δ�

; 		�=
�′

� � � �⁄
;												 

	� =
��
��
� ′																																																																(4) 

 

in equations (1), (2) and (3), we obtain the 
following: 
 

��⃗ .��⃗ = 0                                                       (5) 
 

����
��
��⃗ = −��⃗ � − �����⃗                              (6) 

 
��

��
+ V��⃗ .���⃗ ��= ��T                                      (7) 

 

Whère  �� =
�����

����∆�

��
 : Rayleigh number for 

centrifugal force. 
 

2.2.2 Equations in the disturbed state 
 
In the basic state, we have pure conduction: 
 

��		 = ��		 = �� = 0;							�� = −
1

3
���

� + ����;					�� = � 

 
The question is to know if this solution without 
movement of the fluid will always prevail, 
whatever the difference of temperature ΔT that 
we will impose. We will answer this question by 
launching a stability experiment of the type 
described in the framework of the convection 
transition of laminar-turbulent flow. The linear 
stability experiment consists of disturbing the 
basic solution and observing under which 
conditions the imposed perturbation increases in 
amplitude. So, we substitute 
 

�(�, �, �, �) 	=

�(�, �, �, �) 	=

�(�, �, �, �) 	=

�(�, �, �, �) =

�(�, �, �) 				=� ���� ����

��(�) + 	
0						 +
		0							 + 		
0						 +
��(�)	 +���� ���

	�′(�′, �′, �′, �′)

	�′(�′, �′, �′, �′)

	�′(�′, �′, �′, �′)

�′(�′, �′, �′, �′)

�′(�′, �′, �′)	� ���� ����

 

                 Transient      Basic    Disturbance 
 

in the equations governing the transitional 
regime; we obtain for the following equations in 
the disturbed state: 
 

��⃗ .�′���⃗ = 0                                                      (9) 
 

����
��
��⃗ ′= −��⃗ �� − ����

���̂                       (10) 
 

�
�

��
− ����� + �′

���

��
+ �′

���

��
+ �′

���

��
+ �′

= 0																																																																										(11) 
 

in equation (11), we have the possibility of 

eliminating nonlinear terms (�′ ��
′

��′ ; �
′ ��

′

��′ 	��	�
′ ��

′

��′)  

assuming that the fluid flow rate and the 
disturbance temperature are negligible. Thus, in 
equation (11), only the terms of the first order are 
retained. So we get: 

 

�
�

��
− ���� ′ + �′ = 0                                 (12) 

 

We will eliminate the pressure terms in equation 

(10) by taking twice the nabla (��⃗ ) vector equation 
(10), we obtain the system of equations (13) 
below:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ��

��� ′

����
− �

���′

����
+ �

���′

����
− �

���′

���
− �

���′

���
+ �

���′

���
+ �

���′

���
� = ��.� �

���′

���
+
���′

���
�

−�−�
��� ′

���
− �

��� ′

���
+ �

���′

���
− �

��� ′

����
− �

��� ′

���
+ �

���′

����
+ �

���′

���
� = −�� ��

��� ′

����
+
��′

��
�														(13)

�−�
��� ′

����
+ �

��� ′

����
− �

���′

����
− �

���′

����
− �

��� ′

���
+ �

���′

����
− �

���′

����
� = −����

��� ′

����
+
��′

��
�

� 
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In this system of equations, the component along the axis (o, x) suffices to solve the problem; 
(according to Vadasz [4]); so we get: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

�� ′

��
+
��′

��
+
�� ′

��
= 0																																																																																																																																			

��
���′

����
− �

��� ′

����
+ �

���′

����
− �

��� ′

���
− �

��� ′

���
+ �

���′

���
+ �

���′

���
� = ��.� �

��� ′

���
+
��� ′

���
�																				

�
�

��
− ��� � ′ + �′ = 0																																																																																																																																	

�      (14) 

 

We will rewrite these equations assuming that ��⃗ ′(�′, 0, �′)  and we will use the continuity 

equation�
��� ′

����
= −

��� ′

���
�. The system of equations to be solved thus becomes: 

 

⎩
⎪
⎨

⎪
⎧�� �

��

���
+

��

���
� + �

��

���
+ �

��

����
��′ +

��.� �
��� ′

���
+
��� ′

���
� 	= 0

�
�

��
− ��� � ′ = −�′

�                                                                                       (15) 

 

Applying the operator �
�

��
− ��� to the first line of this system of equations (15), we obtain the 

temperature perturbation equation in the form: 
 
 

⎩
⎪
⎨

⎪
⎧�
�

��
− ������

��

���
+
��

���
� + �

��

���
+ �

��

����
�−

��.� �
��

���
+
��

���
�

⎭
⎪
⎬

⎪
⎫

�′ = 0																																																																				(16) 

 
2.2.3 Analysis in normal mode 
 
The initial condition for this transitory problem is arbitrary; but, inspired by the visual observations of 
Benard's cells, it is logical to assume sinusoidal variables in (y and z) and the exponential variable in 
t: 
 

� = ��Ө(�)�����(�������)                                                                                                       (17) 

 
By substituting equation (17) in equation (16), we obtain: 
 

�(�� − �� − �)(�� � − ���) + ����(�
� − �� − �)� − ����

��Ө = 0																																																		(18) 

 
Where � ≡

�

��
 

 
The appropriate boundary conditions are: 
 

�
	� = 0,			Ө = 0		

	� = 1,			Ө = 1

�
 

 
Equation (18) will be solved by the Galerkin method. Therefore, Ө(�)  is developed in sets of 
orthogonal trivial functions that satisfy the boundary conditions defined in equation (19): 
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Ө(�) = ∑ ��
�
��� ���(���)                                                                                                        (19) 

 
By introducing the expression of Ө (x) into equation (18), we obtain: 
 

� ��

�

���

�[(���� + �� − �)(����� + ���) − ���
��]sin(���) − ������(�

��� + �� − �)cos(���)�= 0		(20)
 

 
With 
 

�= √−1, ��		and		�� the wave numbers describing the periodicity of the perturbation in the directions y 

and z respectively with��
� + ��

� = ��.  �		being the rate of increase of the stability. 

 

2.2.4 Study of marginal stability:		� = 0 
 
We will multiply the equation (20) by sin	(���) and integrate on the domain [0; 1]. So, we get: 
 
 

� ��

�

���

�[(���� + ��)(����� + ���)]� sin	(���)

�

�

sin(���) �� − ���
� � �sin	(���)

�

�

sin	(���)��

− ������(�
��� + ��)� sin(���)

�

�

cos	(���)��� = 0																																																																															(21)	 

� ��

�

���

��(���� + ��)(����� + ���) −
1

2
���

��
���
2
+ 	�

4�.�.���
�

��(�� − ��)�
−
�4�.�.���(�

��� + ��)

�(�� − ��)
�����,�����= 0												(22)

 

  
with 

��� = �
1	�ℎ��		� = �
0	�ℎ��		� ≠ �

�                    and   
����,���� = �

1	�ℎ��		� + �		��	���	������
0	�ℎ��		� + �		��	����	������					

� 

 
N = 1,2 ............., 7 and P any integer 
 
Set m = 1 and let n = 1 to 2 be varied, we get: 
 

1

2
�(�� + ��)(��� + ���) −

1

2
���

���� + �
8���

�

9��
+
�8���(4�

� + ��)

3�
��� = 0																												(23)

 

 

Set m = 2 and vary n = 1 to 2, we get: 
 

�
8���

�

9��
−
�8���(�

� + ��)

3�
�			+

1

2
�(4�� + ��)(4��� + ���) −

1

2
���

���� = 0																											(24)
 

 

Let us write the matrix form ��� = 0 of equations (23) and (24), we obtain: 
 

⎣
⎢
⎢
⎢
⎡
1

2
�(�� + ��)(��� + ���) −

1

2
���

�� �
8���

�

9��
+
�8���(4�

� + ��)

3�
�

�
8���

�

9��
−
�8���(�

� + ��)

3�
�

1

2
�(4�� + ��)(4��� + ���) −

1

2
���

��
⎦
⎥
⎥
⎥
⎤

�

��

��

�= 0								(25)

 

 

This equation has a solution if det (L) = 0⟺  
 

⇒ �
1

16
−

64

81��
� ����

� −
��

8
[(�� + ��)(��� + ���) + (4�� + ��)(4��� + ���)]�� +

1

4
(�� + ��)(��� + ���)(4�� + ��)(4��� + ���)

−
64��

��

9��
(�� + ��)(4�� + ��)� −

�64����
�

9�
�� = 0																																																																																																									(26)		 
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The physical meaning of the Rayleigh number is that this number is a real number; the 
imaginary part of equation (26) is therefore zero: 

 

⇒
������

�

��
= 0

                                                                                                                         (27) 

 
with � and � are non-zero; so it's �� = 0 
 
Equation (26) then becomes: 
 

�
�

��
−

��

����
� ����

� −
��

�
��� +

�

�
δ = 0                                                                                        (28)  

      
With

�

� = (�� + ��)(��� + ���)(4�� + ��)(4��� + ���)

� = [(�� + ��)(��� + ���) + (4�� + ��)(4��� + ���)]
�

 

 

⇒
(3�)� − 1024

(3�)�
����

� − 2����� + 4δ = 0
 

 

Δ′ = (���)� − 4δ�
(3�)� − 1024

(3�)�
��� > 0

 

 

�� =
£�� ± �(���)� − 4δ �

(3�)� − 1024
(3�)�

���

�
(3�)� − 1024

(3�)�
���

 

 
Let  
 

� =
(3�)� − 2��

(3�)�
 

 
The expression of�� becomes:   
 

  �� =
�

���
�ℒ ± �ℒ� − 4δ��                                                                                                    (29) 

 

3. RESULTS AND DISCUSSION 
 
Figs. 2, 3 and 4 respectively illustrate the effect 
of the permeability anisotropy ratio	�∗ = �� ��⁄ , 
the orientation angle �  of the main axes of 
permeability and the effect of the anisotropy 
ratio. � = �� ��⁄ 	 on the linear stability of 
convection in a porous anisotropic medium 
saturated by a non-Newtonian fluid. 
 

In Fig. 2, for 	�∗ = 1	  (isotropic medium), the 
value of the critical Rayleigh number ��� =
77,0829  for a critical wave number of �� = 3,19. 
 

These results correspond well to those found by 
Vadasz [4]		��� = 77,0829, �� = 	1,017π. We find 

that the critical Rayleigh number increases 
with 	�∗ . In other words if 	�∗ < 1, the critical 
Rayleigh number ��� is lower and if 	�∗> 1, this 
number is high. This shows that the ratio of 
permeability anisotropy in the principal directions 
��  and �� has an effect on the initiation of 
convection in the medium. 
 

For Fig. 3, the critical Rayleigh number 
decreases with the axis orientation angle 
permeability. 
 
Indeed, the beginning of the convection is quickly 
reached when the main directions of the axes of 
permeability deviate. 
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Fig. 2. Variation of Ra as a function of k for different values of 	�∗with � = 1	and � = 45° 
 

 

 

Fig. 3. Variation of Ra as a function of k for different values of � with 	�∗ = �.�	and � = � 
 

 

 

Fig. 4. Variation of Ra as a function of k for different values of � with 	�∗ = �.�	and (� = ��°) 
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For Fig. 4, we find that the critical Rayleigh 
number increases with		�. 
 
In other words if �  <1, the critical Rayleigh 
number ��� is lower and if � > 1, this number is 
high. This shows that the ratio of permeability 
anisotropy in the main directions ��and ��has an 
effect on the initiation of convection in the 
medium. 
 

4. CONCLUSION 
 
The problem of the linear stability of an 
anisotropic porous medium in rotation subjected 
to the action of a centrifugal force has been 
studied. From this study, the following 
conclusions emerge: 
 

-  A low value of the permeability anisotropy 
ratio 	�∗makes it possible to quickly reach 
the threshold of convection; 

-  We obtained the same effect for the 
permeability anisotropy ratio		�; 

-  On the other hand, the threshold of the 
convection increases when we increase 
the orientation angle �  of the principal 
axes of permeability. In other words, when 
the principal directions of permeability 
coincide with the directions of the principal 
axes (� = 90°) , the threshold of the 
convection is quickly reached by cons 
when the principal directions of 
permeability are confused with the 
principal axis (�, �)  that is (� = 0° , the 
threshold of the convection is high. 
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