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ABSTRACT 
 

The study assesses the thermal maturity levels of crude oils from the Niger Delta Basin of Nigeria 
using biomarker fingerprinting technique. Thirteen (13) crude oil samples were deasphaltened by 
the addition of n-heptane. The maltene fractions were analysed using the Gas Chromatography-
Mass Spectrometer (GCMS) in Selected Ion Mode (SIM) to obtain the biomarker chromatograms. 
The respective biomarker thermal maturation peaks were extracted and their ratios computed. The 
odd to even predominance (OEP) and carbon preference index (CPI) values vary from 0.94 to1.08, 
with an average value of 1.02 and 1.01 to 1.12, with a mean value of 1.07 respectively. The ratios 
of Pr/n-C17 and Ph/n-C18 for the samples vary from 0.44 to 1.04, with a mean value of 0.73 and 
0.53 to 0.77 with a mean value of 0.63, respectively. The Ts/Tm ratio ranges between 0.56 to 1.25. 
The Ts/(Ts+Tm) ratio ranges from 0.36 to 0.56. The C32 22S/(22S + 22R) hopane ratios for the 
samples range between 0.53 to 0.58. The C29 sterane maturity ratios 20S/(20S + 20R) and 
ββ/(ββ+αα), vary from 0.33 to 0.56 and 0.34 to 0.67, respectively. The estimated biomarker 
maturation parameters suggest the analysed samples reached and or exceeded the peak of the oil 
generation window, with high levels of thermal maturity. 
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1. INTRODUCTION 
 

The world energy demand is increasing 
continually and Africa has been a player in 
meeting this demand. African countries like 
Nigeria, Algeria, Angola, Libya, Ghana, and 
Egypt have steadily increased their average daily 
output yearly. However, the continent is currently 
ranked as the third largest exporter of oil after the 
Middle East and South America, with the Niger 
Delta as the most important petroliferous basin in 
Africa [1,2]. Investment in exploration and 
production of hydrocarbon in Africa has been 
massive especially in offshore basins and 
predictions show that investment in the West 
Africa sub region will exceed those of the Gulf of 
Mexico and the North Sea in the near future 
[3,2]. The Niger Delta Basin is located in the 
Southern part of Nigeria between latitudes 
4°00''N to 6°00''N and longitudes 3°00''N to 
9°00''N (Fig. 1), and occupies an area of about 
300,000 km

2
 with a sediment thickness of about 

2 km at the flanks of the basin [4] and 12 km at 
the basin centre [5,6,2]. 
 

During any exploration activity, there is always 
an interest not only to know the source of the 
hydrocarbons in a reservoir but also to be 
informed on the thermal maturity of those oil 
samples, since this knowledge helps the 
petroleum geochemist with decisions on the 
production and development of a field [2]. The 
evaluation of the maturity level of petroleum has 
an important implication for hydrocarbon 
exploration because it allows for the 
determination of the possible maturation stage of 
oil expulsion. Also, prediction of the discovery of 
hydrocarbon accumulations and their phase 
types in the deeper parts of geological sections 
or undrilled zones of the basin[7]. Conventional 
geochemical methods used to assess source-
rock maturity include Rock-Eval pyrolysis, 
compound class distributions, vitrinite reflectance 
(Ro), thermal alteration index (TAI) (spore 
coloration), and carbon preference index (CPI). 
However, few of these parameters can be 
applied to crude oils. Molecular parameters 
based on ratios and distributions of specific 
biomarkers have found increased use in studies 
of thermal maturity [8]. 

 
Biological markers (biomarkers) are present in 
soil extracts, sediment extracts, rock extracts, 
and oils. They are primarily hydrocarbon 
compounds, made of complex organic 

molecules. Diagenesis and oil generation 
processes do not significantly affect their 
chemical structures. This makes it possible for 
them to be retraced to the original molecules in 
once living organisms. Thus, this explains why 
they are usually referred to as molecular fossils. 
They are similar in structure and are products of 
diagenetic alteration of particular natural 
products [9]. Generally, biomarkers maintain all 
or majority of the natural product’s carbon 
skeleton, and this resemblance in structure 
called for the name "molecular fossils" [9]. 
Thermal stress can cause a chemical 
transformation from one chemical structure into 
another and as a result, these biomarkers’ ratios 
can be employed as a maturity marker [9]. Some 
terpane and sterane biomarker ratios are 
sensitive to changes in thermal maturity and 
likely record the maturity of the corresponding 
source rock at the time the oil was expelled 
(primary migration). These include C27 and C29 
norhopanes, diahopanes, diasteranes, and 
triaromatic steranes as well as 
methyldibenzothiophenes. C29 sterane 20S and 
20R isomer ratios are useful at lower maturities. 
Typically, biomarkers are measured using 
conventional GC-MS techniques (SIM mode) on 
saturate (or branched-cyclic) and aromatic 
hydrocarbon fractions derived from liquid 
chromatography [10]. This paper assesses the 
thermal maturity level of thirteen (13) Niger Delta 
crude oils using biomarker signatures. 
 

1.1 Geological Setting  
 

Three major stratigraphic units are present in the 
Niger Delta (Fig. 2); they are the Akata, Agbada 
and Benin Formations [4,11]. Although there is a 
strong indication of a Cretaceous shale that lies 
unconformably on the basement complex, 
however, the distribution is generally unknown[4]. 
However, recently Geoexpro was able to show 
that a regional Cretaceous shale exists on the 
basement complex with thicknesses of about 2 
km in the offshore part of the Basin, based on 18 
seconds two-way travel time (TWT) seismic 
measurements [12]. The Cretaceous shales have 
so far not been drilled in the Niger Delta region 
mostly because they are beneath the over 
pressured formation and the thick overburden 
pile above them [13]. The lateral equivalent of 
these Cretaceous shales and Akata Formation in 
the adjacent Anambra Basin (located at the 
northeast of the Niger Delta) were deposited in 
the Albian to Palaeocene when the shoreline was 
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concave [14]. This resulted in tidal dominated 
and river dominated sedimentation during 
transgression and regression [13]. These 
Cretaceous shale equivalents in the Anambra 

Basin include; Asu River shales (Albian-
Cenomanian); Eze-Uku/ Awgu shales 
(Cenomanian to Santonian); Nkporo shales 
(Campanian-Maastrichtian) [15]. 

 

 
 

Fig. 1. Location of the Niger Delta Basin [11,2] 
 

 
 

Fig. 2. Stratigraphy of the Niger Delta [16,17] 
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2. METHODOLOGY 
 
Thirteen (13) crude oil samples from the Niger 
Delta Basin were used for this study. The 
samples were deasphaltened by the addition of 
n-heptane, and the maltene fraction fractionated 
into aromatics, saturates, and polar fractions. 
The saturates were further subjected to GCMS 
analysis. The biomarker chromatogram 
accession was controlled by the chemstation 
software in selected ion mode (SIM). The n-
alkanes and isoprenoids for the analysed 
samples were distinguished using m/z 85, the 
sterane biomarkers were detected on m/z 218 
and that of triterpane and hopane were identified 
on m/z 191. The biomarker chromatograms were 
compared to that of [8] for the identification of 
their peaks.  
 

3. RESULTS AND DISCUSSION 
 

To obtain an initial estimate of the thermal 
maturity of crude oil, the relative abundance of 
odd and even carbon numerated n-alkanes was 
used. The carbon preference index (CPI) [18] 
and the Odd-to-Even Predominance (OEP) [19] 
are included in these measurements. These 
parameters together with some biomarker 
thermal maturity parameters were used to 
evaluate the thermal maturity of the crude oils 
from the Niger Delta. 

Low thermal maturity is suggested by CPI or 
OEP values significantly below 1.0. Values of 1.0 
or higher indicate that an oil or rock extract is 
thermally mature [8]. The studied crude oil 
samples have OEP and CPI values varying from 
0.94 to 1.08, with an average value of 1.02 and 
1.01 to 1.12, with a mean value of 1.07 
respectively. These values suggest that the 
studied samples are of high maturity levels [20]. 
The cross-plot of Pr/Ph against CPI in Fig. 3 
corroborates the above conclusion. Only two (2) 
samples recorded OEP values less than 1.0 
(0.94 and 0.97 respectively). 
 
The ratios of Pr/n-C17 and Ph/n-C18 for the 
studied samples vary from 0.44 to 1.04, with a 
mean value of 0.73 and 0.53 to 0.77 with a mean 
value of 0.63, respectively. The low values for 
Pr/n-C17 and Ph/n-C18 ratios suggest high 
maturation levels for the studied crude oils as 
well as no biodegradation effects [21].  
 
The Ts and Tm biomarkers ratio is often used as 
a maturity indicator in the terms Ts/(Ts + Tm) 
and Ts/Tm ratios [22,8,23,24], where Ts is more 
stable than Tm for thermal maturation. The 
Ts/(Ts + Tm) ratios, however, increases with 
increasing maturity [8,23,24]. The Ts/Tm ratio 
(0.56 to 1.25) for the studied samples reflects the 
same interpretation (high maturity) as do the 
ratios of Ts/(Ts+Tm) of 0.36 to 0.56. 

 

 
 

Fig. 3. Pristane/Phytane versus CPI showing the Maturity of studied Crude Oils 
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The hopane ratio, computed using the relation; 
C32 22S/(22S + 22R) is a frequently used 
biomarker maturity parameter [8]. The ratio of C32 
22S/(22S + 22R) increases during maturation 
from 0 to 0.6 (0.57 to 0.62 = equilibrium) 
[25,8].Crude oil samples that show C32 22S/(22S 
+ 22R) ratios in the 0.50 to 0.54 range have just 
entered oil generation, whereas ratios in the 
interval 0.57 to 0.62 denote the principal stage of 
oil generation has been reached or exceeded 
[25,8]. The samples analysed indicate values in 
the range of 0.53 to 0.58, denoting high maturity 
levels for the studied oils [25,26]. This oil maturity 
level is also examined from the C29 sterane ratios 
of 20S/(20S + 20R) and ββ/(ββ+αα) as these 
ratios step-up with increasing maturity [27]. The 
C29 sterane maturity ratios 20S/(20S + 20R) and 
ββ/(ββ+αα), varying from 0.33 to 0.56 and 0.34 
to 0.67, respectively, denote thermal maturation 
levels of low to high for the studied samples, 
consistent with their generation from early-oil 
window to peak oil window [8,22] as shown in 
Fig. 4. 
 

The above assertion is corroborated by the C29 
steranes cross-plot of ββ/(αα + ββ) versus 
20S/(20S + 20R) (Fig. 5). The cross-plot is 
particularly effectual in explaining the thermal 

maturity of source rocks or oils and could be 
applied in comparing one maturity parameter 
with another [27].  

 
The majority of the studied samples fell within the 
zone of equilibrium (peak oil window), with some 
above the zone of equilibrium, denoting high 
maturity. However, a few samples fell below the 
equilibrium zone (early maturity/ early oil 
window).  

 
The cross-plots in Figs. 6 and 7 are consistent 
with the above conclusions. The moretane/C30 
hopane has eminent specificity for immature to 
early oil generation and it is evaluated by using 
m/z 191 chromatograms [8]. The 17β,21α(H)-
moretanes ratio to their corresponding 
17α,21β(H)-hopanes diminishes with thermal 
maturation, approximately 0.8 in bitumen to 
<0.15 in mature source rocks and oils to a 
minimal of 0.05 [28,25]. The hopane ratios 
moretane/C30, for the studied samples have low 
concentrations with values ranging from 0.21 to 
0.43. The low values in concentration for the 
studied samples indicate the studied samples 
were generated at the initial stage of thermal 
maturation [28,25].  

 

 
 

Fig. 4. C29 Sterane S/(S + R) versus C32 Hopane S/(S+R) 
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Fig. 5. Relationship between C29ααα20S/(20S+20R) and C29 αββ/(αββ+ααα) 
 

 
 
Fig. 6. Plot of the Sterane Index C29αββ/(αββ+ααα) versus the Sterane Index C29ααα 20S/(20S+ 

20R) 
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Fig. 7. Cross-plot of αβ/(αβ+βα) C30 hopane versus αβ/(αβ+βα) C29 hopane 
 

4. CONCLUSION 
 
The estimated biomarker maturation parameters 
derived from the saturate fraction of the analysed 
oils indicate that the oils have reached and or 
exceeded the peak of the oil generation window, 
with high levels of thermal maturity. The study 
demonstrates the effectiveness of the use of 
biomarker techniques in the assessment of crude 
oil thermal maturity levels and can be used to 
complement other thermal maturity assessment 
techniques. 
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