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ABSTRACT 
 

Stock prices present unique forecasting challenges due to factors such as market volatility, investor 
sentiment, and economic indicators, which contribute to significant fluctuations in time series data. 
This paper addresses these complexities by applying Deep Learning (DL) models to predict stock 
prices, with a particular focus on the S&P 500 index. Although DL models have shown remarkable 
success in fields like image processing and natural language processing, they require specialized 
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architectures to effectively handle time series forecasting. This study examines the Neural Basis 
Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) model, a novel DL 
architecture specifically tailored for time series data, using S&P 500 stock price data. The 
performance of N-BEATS is benchmarked against three baseline models: Convolutional Neural 
Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). The 
evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE). Results indicate that the N-BEATS model consistently 
surpasses the other models in all metrics. Additionally, the Diebold-Mariano (DM) test further 
validates the superior predictive accuracy of the N-BEATS model compared to the alternatives. This 
research underscores the potential of the N-BEATS model to significantly improve stock price 
forecasting, offering valuable insights for investors, financial analysts, and other market participants. 
 

 

Keywords: Stock price; basis expansion; Convolutional Neural Network (CNN); deep learning; Long 
Short-Term Memory (LSTM); Gated Recurrent Unit (GRU); N-BEATS. 

 

1. INTRODUCTION 
 
Time series analysis is a crucial tool used across 
various fields to understand and predict future 
values based on historical data. Its applications 
span finance, economics, environmental studies, 
and more, with one prominent use being the 
analysis of stock prices [1]. In the financial 
sector, accurate time series forecasting is 
essential for making informed investment 
decisions, managing risks, and developing 
effective trading strategies [2]. For instance, the 
S&P 500 index, a benchmark for the U.S. stock 
market, is frequently analyzed through historical 
price data provided by platforms such as Google 
Finance. Forecasting these prices is vital for 
traders, investors, and policymakers to navigate 
market volatility and optimize financial outcomes. 
 
A range of time series techniques exists for 
forecasting stock prices, each with its strengths 
and limitations. Traditional models like 
AutoRegressive Integrated Moving Average 
(ARIMA) are well-regarded for their simplicity and 
effectiveness in capturing linear relationships 
within data [3]. However, ARIMA models struggle 
with nonlinear patterns and require assumptions 
about data stationarity, limiting their applicability 
in more complex scenarios [4]. As a result, 
Machine Learning (ML) models emerged as a 
more sophisticated alternative, offering enhanced 
capabilities for handling nonlinearity and larger 
datasets. Yet, ML models often demand 
extensive manual feature extraction, which can 
be challenging and labor-intensive [5]. 
 
The emergence of Deep Learning (DL) models 
marks a significant leap forward in time series 
forecasting, overcoming many of the limitations 
associated with traditional and ML approaches(Li 
and Bastos 2020). Early DL models, such as 

Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) networks, were 
pioneering in their ability to capture sequential 
dependencies in time series data [6]. Despite 
their advancements, these models often faced 
challenges such as vanishing gradients and high 
computational demands. Building on these initial 
successes, the N-BEATS (Neural Basis 
Expansion Analysis for Time Series) model 
introduces a novel architecture that features 
stacked blocks of fully connected layers for both 
forecasting and backcasting. Unlike traditional 
models, N-BEATS does not rely on time-series-
specific components like trend or seasonality, 
allowing it to dynamically adapt to complex 
patterns and enhance predictive accuracy [7].  
 
Various studies have explored a range of 
statistical, Machine Learning (ML), and Deep 
Learning (DL) algorithms for stock price 
prediction. Conejo et al. [8] investigated day-
ahead electricity price forecasting using ARIMA 
models. For stock price prediction, [9] combined 
statistical, ML, and DL approaches, and [10] 
introduced the ELM-AE method, which 
surpasses existing techniques in terms of Mean 
Squared Error (MSE). Tripathi and Sharma [11]  
found that Deep Neural Networks (DNNs) 
outperformed LSTM and CNN-LSTM models in 
Bitcoin price prediction Singhal V et al. [12] 
improved stock market forecasting by combining 
wavelet decomposition with N-BEATS. Aslam et 
al. [13] achieved promising results in predicting 
wind power using the N-BEATS model and 
Sbrana and Lima de Castro [14] investigated its 
performance in forecasting cryptocurrency. 
Nayak et al. [15] utilized Deep learning 
techniques including NBEATS for improved 
forecasting of price of TOP crops in India. These 
studies underscore the efficacy of ML and DL 
algorithms for price forecasting and the 
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importance of selecting models suited to the 
specific characteristics of the data. 
 

In this study, we employed the novel deep 
learning approach N-BEATS alongside baseline 
models such as CNN, LSTM, and GRU to 
forecast S&P 500 stock prices sourced from 
Google Finance. By utilizing these advanced 
models, the research aims to improve the 
accuracy of stock price predictions and provide 
valuable insights into the stock market. This 
comprehensive analysis highlights not only the 
effectiveness of N-BEATS compared to 
traditional models but also its potential for 
enhancing stock price forecasting. 
 

2. MATERIALS AND METHODS 
 

2.1 Data Description 
 
This study utilizes the Closing price of S&P 500 
stock, which contains 1340 observations from 
January 1, 2018, to April 30, 2023. The data is 
obtained from 'Google Finance'. 
 

2.2 Deep Learning Techniques used for 
Forecasting Price Series 

 
2.2.1 Convolutional Neural Network (CNN) 
 
A convolutional neural network (CNN) excels in 
identifying visual patterns and is distinguished by 
its specialized architecture. Central to a CNN are 
three key types of layers: convolutional layers, 
sub-sampling layers, and fully connected layers. 

The architecture typically consists of multiple 
convolutional and sub-sampling layers stacked 
together, followed by a series of fully connected 
layers (see Fig. 1). 
 
Convolutional layers are designed to process 
inputs from neighboring nodes, similar to how 
cells in the visual cortex work. These layers use 
shared local weights, which not only help 
conserve memory but also improve classification 
performance. Following the convolutional layers, 
sub-sampling layers perform non-linear down-
sampling, reducing the dimensionality of the 
data. This reduction lowers local sensitivity and 
computational complexity, enhancing the 
network’s ability to learn features and patterns 
more effectively [16]. 
 
The final stage involves fully connected layers, 
which are akin to those in standard neural 
networks. These layers conduct extensive matrix 
computations with all activations and nodes. After 
the convolutional and sub-sampling layers have 
extracted features, the fully connected layers are 
responsible for reasoning and generating the 
model's output. CNNs are trained through 
backpropagation, which optimizes the model to 
minimize the difference between actual and 
target output values. This layered structure, 
combining convolutional, sub-sampling, and fully 
connected layers, enables CNNs to adeptly 
recognize patterns and features in visual data, 
making them highly effective for a range of 
computer vision applications. 

 

 
 

Fig. 1. One-dimension convolutional neural network (1D-CNN) architecture 
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2.2.2 Long Short-Term Memory (LSTM) 
 

LSTM was introduced by Hochreiter and 
Schmidhuber in 1997 to address a critical 
limitation of traditional Recurrent Neural 
Networks (RNNs)—their inability to effectively 
manage long-term dependencies in sequences. 
The LSTM model integrates specialized gating 
mechanisms into the RNN architecture to 
overcome this issue. These gates include the 
forget gate, the input gate, and the output gate, 
all implemented as sigmoid layers as shown in 
Fig. 2 [17]. 
 
The forget gate determines the relevance of 
previous information by deciding whether to 
retain or discard it. It outputs 𝑓𝑡 , which ranges 
from 0 to 1, where 0 means complete discarding 
and 1 indicates full retention. The calculation for 
the forget gate is:  
 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 
Similarly, the input gate determines which new 
values should be updated by processing the 
previous output (ℎ𝑡−1) and the current input (𝑥𝑡) . 
It uses a weight matrix 𝑊𝑖, a sigmoid function 𝜎, 

and a bias term 𝑏𝑖, generating a candidate value 

for the current cell state 𝐶𝑡̂: 
 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
 

The candidate cell state value 𝐶𝑡̂  is calculated 
using the hyperbolic tangent function:  

 

𝐶𝑡̂ = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

The updated cell state 𝐶𝑡  combines the forget 

gate output 𝑓𝑡 , the previous cell state 𝐶𝑡−1 , the 

input gate output 𝑖𝑡, and the new candidate state 

𝐶𝑡̂:  
 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̂ 
 

The output gate then determines how much of 
the cell state should affect the current output. 
The output 𝑜𝑡  is calculated using a sigmoid 

function, and the final output ℎ𝑡  is derived by 
applying the hyperbolic tangent function to the 
current cell state and scaling it by the output gate 
value:  

 
𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

 
In the LSTM model’s fully connected layer, the 
Rectified Linear Unit (ReLU) activation function is 
utilized, while the mean square error (MSE) 
serves as the loss function for performance 
optimization [18]. 
 
2.2.3 Gated Recurrent Unit (GRU) 
 
Introduced in 2014, Gated Recurrent Units 
(GRUs) offer a streamlined and more efficient 
alternative to Long Short-Term Memory (LSTM) 
layers [19]. Unlike LSTMs, which use separate 
input and forget gates, GRUs combine these into 
a single update gate and unify the hidden and 
cell states as shown in Fig. 2, resulting in fewer 
parameters and reduced computational

 

 
 

Fig. 2. LSTM architecture 
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complexity. This simplification enhances the 
efficiency and cost-effectiveness of GRUs. 
 
GRUs are designed to prioritize recent 
information, which is often more relevant for 
predicting future outcomes compared to older 
data. This focus on recent events helps GRUs 
perform effectively by retaining pertinent 
information while discarding less relevant past 
data. The GRU's reset gate controls how much of 
the previous information is discarded, while the 
update gate manages the integration of new 
information into the current state [20]. 
 
The update gate is computed as:  
 

𝑍𝑡(𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) 
 
The reset gate is calculated using:  
 

𝑅𝑡(𝑅𝑒𝑠𝑒𝑡 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑅 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑅) 
 

The new candidate state, 𝐻̂𝑡 , is obtained by 

applying the hyperbolic tangent (𝑡𝑎𝑛ℎ) function 
to the product of the reset gate and the previous 
hidden state:  
 

𝐻̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡∗(ℎ𝑡−1, 𝑥𝑡)] + 𝑏𝑧) 
 
This calculation allows the GRU to manage the 
flow of relevant information effectively. The final 
hidden state, ℎ𝑡 , is computed by combining the 

previous hidden state and the new candidate 
state, moderated by the update gate:  
 

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ𝑡−1 + 𝑍𝑡 ∗ ℎ𝑡) 
 
In GRUs, the update and reset gates, controlled 
by sigmoid activation functions, regulate the 
recurrent connections and input values. The 
weight matrices 𝑊𝑍 , 𝑊𝑍  and 𝑊 , along with the 
bias terms  𝑏𝑍  and 𝑏𝑅 , determine how input 
values are processed within these gates. The 
final hidden state represents a blend of the 
previous state and the new candidate, adjusted 
according to the update gate’s output. 
 
2.2.4 Neural basis expansion analysis for 

interpretable time series forecasting 
(N-BEATS) 

 
N-BEATS enhances data interpretation and 
prediction accuracy through basis expansion, a 
technique that transforms the original data into a 
higher-dimensional space to capture non-linear 
relationships [21].  Unlike traditional methods, 
which manually select basis expansion 
techniques, N-BEATS employs a neural network 
to automatically determine and optimize the most 
effective data augmentation strategy during 
training. This adaptive approach allows the 
model to tailor the basis expansion to the specific 
characteristics of the dataset, resulting in 
improved interpretability and predictive 
performance. 
 

 
 

Fig. 3. GRU architecture 
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For univariate point forecasting, the objective is 

to predict a future value vector 𝑦 ∈ 𝑅𝐻 =
[𝑦𝑇+1, 𝑦𝑇+2, … , 𝑦𝑇+𝐻]  over a forecast horizon 𝐻  
which is depicted in Fig. 4. This prediction is 

based on a historical time series [𝑦1, … , 𝑦𝑇] ∈ 𝑅𝑇 
and uses a lookback window of length ≤ 𝑇 , 

represented by 𝑥 ∈ 𝑅𝑡 = [𝑦𝑇−𝑡+1, … , 𝑦𝑇] , ending 
with the last observed value 𝑦𝑇 . The predicted 

values are denoted as  𝑦̂. 
 
N-BEATS is built on three core principles: 
creating a simple yet expressive deep learning 
architecture, avoiding dependence on time-
series-specific components like trend or 
seasonality, and ensuring model extendibility for 
better interpretability. The model inputs the 
lookback period, while the forecast period 
contains actual values used to evaluate 
predictions. The input sequence length is usually 
a multiple of the forecast horizon H, ranging from 
2H to 7H. The architecture consists of stacked 
layers, with each stack composed of multiple 
blocks. Each block has four fully connected 
layers and generates two outputs: a forecast and 
a backcast. The forecast predicts future values, 
while the backcast allows for immediate 
comparison with the input sequence, helping 
assess the model's fit. Each block calculates 
expansion coefficients 𝜃  and performs basis 

expansion 𝑔, enhancing the model's adaptability 
and accuracy [15]. 
 
In this architecture, only the first block receives 
the actual input sequence. Subsequent blocks 
are given the residuals from the previous block, 
ensuring that each block captures information 
missed by the previous one. The basic block, 
depicted in Fig. 4, has a fork architecture. The 

𝑙𝑡ℎ block processes its input 𝑥𝑙 and produces two 
vectors, 𝑥̂𝑙  and 𝑦̂𝑙 . For the first block, 𝑥𝑙 
represents the input history lookback window 
ending with the last observed value. For later 
blocks, 𝑥𝑙 comprises residual outputs from earlier 
blocks. Each block generates a forward forecast  
𝑦̂𝑙 of length 𝐻 and a backcast 𝑥̂𝑙, an estimate of 
𝑥𝑙 within the block's functional space. 
 
Internally, each basic block includes two 
components. The first part is a fully connected 

network that produces forward 𝜃𝑙
𝑓

and the 

backward 𝜃𝑙
𝑏 expansion coefficients. The second 

part involves backward 𝑔𝑙
𝑏  and the forward 𝑔𝑙

𝑓
 

basis layers, which project the expansion 

coefficients 𝜃𝑙
𝑓

 and 𝜃𝑙
𝑏  onto basis functions to 

generate the backcast 𝑥̂𝑙  and the forecast 

outputs 𝑦̂𝑙. 

 

 
 

Fig. 4. The architecture of N-BEATS 
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The operations of the first part of the 𝑙𝑡ℎ block is 
defined by:  
 

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙), ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1), ℎ𝑙,3 =

𝐹𝐶𝑙,3(ℎ𝑙,2), ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3) 𝜃𝑙
𝑏 =

𝐿𝑖𝑛𝑒𝑎𝑟𝑙
𝑏(ℎ𝑙,4), 𝜃𝑙

𝑓
= 𝐿𝑖𝑛𝑒𝑎𝑟𝑙

𝑏(ℎ𝑙,4) 

 
where the Linear layer represents a simple linear 

projection, 𝜃𝑙
𝑓

= 𝑊𝑙
𝑓

ℎ𝑙,4. The FC layer refers to a 

fully connected layer with ReLU non-linearity. 
This part aims to predict the forward expansion 

coefficients 𝜃𝑙
𝑓

 to optimize the accuracy of 𝑦̂𝑙 and 

the backward expansion coefficients 𝜃𝑙
𝑏  to 

produce an estimate of 𝑥𝑙, facilitating the removal 
of irrelevant components for downstream blocks. 
 
The second part of the block maps the expansion 

coefficients 𝜃𝑙
𝑓

 and 𝜃𝑙
𝑏 to outputs using basis 

layers:  
 

𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) , 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏) 

 
which is further defined as: 
 

𝑦̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

𝑑𝑖𝑚(𝜃𝑙
𝑓

)

𝑖=1

, 𝑥̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

𝑑𝑖𝑚(𝜃𝑙
𝑏)

𝑖=1

 

 

where 𝑣𝑖
𝑓
 and 𝑣𝑖

𝑏  are the forecast and backcast 

basis vectors, respectively, and 𝜃𝑙,𝑖
𝑓

 is the 𝑖𝑡ℎ 

element of 𝜃𝑙
𝑓
. 

 
The N-BEATS architecture diverges from 
classical residual networks by introducing a 
hierarchical doubly residual topology                  
with two residual branches: one for the      
backcast prediction and another for the forecast 
branch. This topology is described by:  
 

𝑥𝑙 = 𝑥𝑙−1 − 𝑥̂𝑙−1, 𝑦̂ = ∑ 𝑦̂𝑙
𝑙

 

 
For the first block, the input is the model-level 
input 𝑥 , so 𝑥1 ≡ 𝑥 . Subsequent blocks analyze 
residuals from previous blocks, removing well-
approximated signal portions to simplify the 
forecasting task for later blocks. This structure 
aids in smoother gradient backpropagation. Each 
block produces a partial forecast 𝑦̂, aggregated 
first at the stack level and then at the overall 
network level. The final forecast 𝑦̂ is the sum of 
these partial forecasts. The model’s design 

allows for arbitrary 𝑔𝑙
𝑏  and 𝑔𝑙

𝑓
 functions, 

enhancing transparency to gradient flows. When 

𝑔𝑙
𝑏  and 𝑔𝑙

𝑓
 are structured and shared across 

layers, the model gains interpretability through 
the aggregation of meaningful partial forecasts. 
The residual connections capture missed 
information from previous blocks, with the final 
forecast being a composite of all partial 
predictions. 

 
2.3 Data Pre-processing and 

Normalization 
 
To achieve effective fitting of deep learning 
models and ensure unbiased extrapolation, it is 
crucial to preprocess and normalize the data 
series. Normalization transforms the values of 
both series to a uniform range between 0 and 1 
while maintaining their original shape. This 
process enhances the robustness of model 
training and improves the model’s ability to 
generalize patterns from the data. The 
normalization is carried out using the following 
formula: 
 

𝑋′
𝑡 =

𝑋𝑡 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

 
where  𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  represent the minimum 
and maximum values of the series,       
respectively, and 𝑋𝑡  is the value at time t. The 

result, 𝑋′
𝑡, is the normalized value 

 

2.4 Hyperparameter Tuning 
 
Here, we provide a comprehensive overview of 
the hyperparameters used in developing the 
various forecasting models. The fine-tuning 
process utilized the random search method for 
hyperparameter optimization. Specifically, 
random search was employed to optimize 
hyperparameters for the DL models. Training 
accuracy was evaluated across a range of 
randomly selected hyperparameter 
combinations, with the final configuration 
selected based on the highest achieved 
accuracy, as detailed in Table 1. In our study,          
we implemented four different algorithms: CNN, 
LSTM, GRU, and N-BEATS to forecast the S&P 
500 stock price. 

 
2.5 Performance Measure 
 
a) Mean Absolute Percentage Error (MAPE) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖 − 𝑦̂

𝑦𝑖

|

𝑁

𝑖=1
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b) Mean Absolute Error (MAE) 
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂|

𝑁

𝑖=1

 

 
c) Root Mean Squared Error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝑖=1

  

 
where, 𝑁 is the number of observations in the 

dataset, 𝑦𝑖 is the true values of the variable being 
predicted and 𝑦̂  is the predicted values of the 
variable. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Descriptive Statistics 
 
Table 2 presents the descriptive statistics of the 
experimental datasets utilized in this study, while 

Fig. 5 depicts the actual time series plot of the 
S&P 500 stock price. The graphs                        
clearly indicate that the data exhibit non-
stationarity, a finding further confirmed by 
statistical tests. 
 
The S&P 500 stock price, ranging from $ 2237.4 
to $ 4796.56, demonstrates significant volatility, 
as reflected in the standard deviation detailed in 
Table 2. The data is positively skewed and 
exhibits platykurtic behavior, indicating a non-
normal distribution, which is further validated by 
the Shapiro-Wilk test. The dataset comprises 
1340 observations, divided into a training set 
(80%) and a testing set (20%). The training set, 
containing 1072 observations, is utilized for 
model development, while the testing set, with 
268 observations, is employed for model 
validation and post-sample prediction. This 
partitioning strategy enables a comprehensive 
analysis of S&P 500 stock price dynamics, 
ensuring robust model performance evaluation 
across both subsets. 

 
Table 1. The hyperparameters and their values of different models used for comparison 

 

Models Hyperparameters Values 

N-BEATS Fully connected layers 4 

Lookback 7 

Horizon 1 

Stacks 30 

Neurons per layer 512 

Epochs 500 

Loss function MAE 

Optimizer Adam 

CNN Filters 128 

Kernel size 5 

Batch size 128 

Epochs 100 

Loss function MAE 

Optimizer Adam 

LSTM Inputs 128 

Activation function ReLU 

Batch size 128 

Epochs 100 

Loss function MAE 

Optimizer Adam 

GRU Inputs 128 

Activation function ReLU 

Batch size 128 

Epochs 100 

Loss function MAE 

Optimizer Adam 
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Table 2. Descriptive statistics of S&P 500 stock price. 
 

Descriptive Statistics Price (U.S. dollars ($) per share) 

Minimum 2237.40 
Mean 3484.71 
Maximum 4796.56 
Standard Deviation 663.27 
Coefficient of Variation (%) 19.03 
Skewness 0.23 
Kurtosis -1.35 
Shapiro-Wilk’s test 0.92 (<0.0001) 

The value in the parentheses indicates p-value 
 

 
 

Fig. 5. Time series plot of S&P 500 stock price series 
 
3.2 Test for Stationarity 
 
Stationarity is a crucial factor in forecasting 
models and is assessed in this study using the 
Augmented Dickey-Fuller (ADF) test [22,23]. The 
ADF test's null hypothesis suggests that the 
series is non-stationary or possesses a unit root. 
However, the results, as shown in Table 3, 
confirm that the series is stationary. 
 

3.3 Performance Evaluation 
 
The performance evaluation of each model on 
the S&P 500 stock price dataset was conducted 
using metrics such as MAPE, MAE, and RMSE, 
as detailed in Table 4. The N-BEATS model 
consistently outperformed the others, achieving 
the lowest MAPE of 1.15, MAE of 45.85, and 
RMSE of 59.42. These results underscore the N-
BEATS model's exceptional capability in 
capturing the underlying patterns and dynamics 
of the S&P 500 stock price series, resulting in 
more accurate forecasts. 

Traditional models such as ARIMA often fall short 
in capturing nonlinear patterns, while parametric 
nonlinear models like GARCH are limited by their 
restrictive assumptions. To overcome these 
limitations, researchers have increasingly turned 
to machine learning (ML) methods. However, 
ML's predictive accuracy can falter with large 
datasets due to the necessity for manual feature 
extraction. As a result, deep learning (DL) 
architectures, including CNN, LSTM, and GRU, 
have gained popularity for modeling stock price 
data. This study introduces the N-BEATS 
algorithm for forecasting the S&P 500 price 
series from Google Finance. Comparative 
analysis reveals that N-BEATS surpasses CNN, 
LSTM, and GRU in predictive accuracy, 
achieving the lowest values for key performance 
metrics like MAPE, MAE, and RMSE, as 
depicted in Fig. 6. These results highlight N-
BEATS' superior effectiveness in                       
capturing trends and patterns within time series 
data. 
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Table 3. ADF test result of S&P 500 stock price 
 

Data Augmented Dickey-Fuller Remarks 

Statistic 𝑝 - value 

S&P 500 stock price -1.13 0.69 Stationary 

 
Table 4. Results obtained by different models on the testing dataset for S&P 500 stock price 

 

Models MAPE (%) MAE RMSE 

CNN 1.61 63.80 80.95 
LSTM 1.70 67.69 85.19 
GRU 1.66 66.12 83.53 
N-BEATS 1.15 45.85 59.42 

 
Table 5. Diebold–Mariano test results of S&P 500 stock price 

 

Models CNN LSTM GRU N-BEATS 

CNN - -8.01 
(0.82) 

-3.38 
(0.95) 

5.92 
(0.004) 

LSTM -8.01 
(0.82) 

- 9.50 
(0.86) 

3.64 
(0.008) 

GRU -3.38 
(0.95) 

9.50 
(0.86) 

- 5.08 
(0.005) 

N-BEATS 5.92 
(0.004) 

3.64 
(0.008) 

5.08 
(0.005) 

- 

Values in the parentheses indicates p-value 

 

 
 

Fig. 6. Bar diagram of evaluation criteria of S&P 500 series on the testing dataset 
 
N-BEATS' impressive performance is largely due 
to its innovative architecture, which utilizes 
stacked blocks of fully connected layers for both 
backcasting and forecasting. This architecture is 

further enhanced by the incorporation of residual 
links and double residual stacking, which 
significantly improves the model's learning 
capacity and prediction accuracy. The model's 
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adaptability and flexibility allow it to effectively 
manage diverse time series patterns and various 
data types. Validation through the Diebold-
Mariano (DM) test underscores N-BEATS' 
superior forecasting accuracy when compared to 
other benchmark models, as detailed in Table 5. 
This confirms N-BEATS capability to capture 
complex patterns and its efficacy across different 
forecasting tasks. While the current N-BEATS 
model does not include spatiotemporal modeling, 
future adaptations aimed at integrating such data 
could enhance its utility, particularly in scenarios 
involving spatial-temporal dynamics. Overall, this 
study demonstrates that N-BEATS is a highly 
effective and advanced tool for time series 
forecasting, offering significant benefits for both 
practitioners and researchers in the field. 
 

4. CONCLUSION 
 
Accurate stock price forecasting is essential for 
making well-informed investment decisions and 
maintaining market stability. Traditional 
approaches like ARIMA often struggle with the 
intricacies of nonlinear patterns, leading to the 
adoption of machine learning (ML) techniques. 
Despite their advantages, ML models encounter 
difficulties with extensive manual feature 
extraction, particularly when dealing with large 
datasets. The development of deep learning (DL) 
architectures, including CNNs, LSTMs, GRUs, 
and notably N-BEATS, has marked a significant 
advancement in stock price prediction. N-BEATS 
stands out due to its unique architecture, which 
incorporates stacked blocks, residual 
connections, and a double residual stacking 
approach, enabling it to effectively capture 
complex time series patterns. This innovative 
framework not only enhances prediction 
accuracy but also performs exceptionally well in 
comparative analyses and validation tests, such 
as the Diebold-Mariano test. While the N-BEATS 
model is powerful for time series forecasting, it 
has limitations such as reduced interpretability, 
high computational cost, and sensitivity to 
hyperparameters, which may lead to overfitting, 
especially in smaller datasets. It is primarily 
designed for univariate forecasting and lacks 
support for spatiotemporal modeling, limiting its 
application in more complex scenarios. Future 
research could focus on integrating 
spatiotemporal data, developing hybrid models, 
and expanding the model to multi-variate 
forecasting. Applying N-BEATS across various 
financial markets could also test its 
generalizability and robustness. Overall, N-
BEATS is a robust and advanced tool for stock 

price forecasting, providing valuable insights for 
both practitioners and researchers. 
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