
*Corresponding author: E-mail: govinda.seepana@gmail.com;

Cite as: Naik, B. Samuel, V C Karthik, B. Manjunatha, Veershetty, Harish Nayak, G. H., B S Varshini, Halesha P, and S
Govinda Rao. 2024. “Stock Price Forecasting Using N-Beats Deep Learning Architecture”. Journal of Scientific Research and
Reports 30 (9):483-94. https://doi.org/10.9734/jsrr/2024/v30i92373.

Journal of Scientific Research and Reports

Volume 30, Issue 9, Page 483-494, 2024; Article no.JSRR.122969
ISSN: 2320-0227

Stock Price Forecasting using
N-Beats Deep Learning Architecture

B. Samuel Naik a, V C Karthik b, B. Manjunatha b,

Veershetty b, Harish Nayak, G. H. c, B S Varshini b,

Halesha P a and S Govinda Rao d*

a Banaras Hindu University (BHU), Varanasi, Uttar Pradesh-221 005, India.
b The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi – 110 012, India.

c University of Agricultural Sciences, Dharwad, Karnataka– 580 005, India.
d Department of Statistics and Computer Applications, ANGRAU Agricultural College Naira,

Srikakulam, Andhra Pradesh -522 101, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors BSN, KVC, BM, Veershetty,
ASBS, BSV, HP helped in material preparation, collected and analyzed the data and performed the

methodology. Authors BSN, KVC, BM, Veershetty wrote the first draft of the manuscript. Author
HNGH wrote and commented on its improvement. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/jsrr/2024/v30i92373

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer
review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/122969

Received: 29/06/2024
Accepted: 31/08/2024
Published: 03/09/2024

ABSTRACT

Stock prices present unique forecasting challenges due to factors such as market volatility, investor
sentiment, and economic indicators, which contribute to significant fluctuations in time series data.
This paper addresses these complexities by applying Deep Learning (DL) models to predict stock
prices, with a particular focus on the S&P 500 index. Although DL models have shown remarkable
success in fields like image processing and natural language processing, they require specialized

Original Research Article

https://doi.org/10.9734/jsrr/2024/v30i92373
https://www.sdiarticle5.com/review-history/122969

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

484

architectures to effectively handle time series forecasting. This study examines the Neural Basis
Expansion Analysis for Interpretable Time Series Forecasting (N-BEATS) model, a novel DL
architecture specifically tailored for time series data, using S&P 500 stock price data. The
performance of N-BEATS is benchmarked against three baseline models: Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). The
evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). Results indicate that the N-BEATS model consistently
surpasses the other models in all metrics. Additionally, the Diebold-Mariano (DM) test further
validates the superior predictive accuracy of the N-BEATS model compared to the alternatives. This
research underscores the potential of the N-BEATS model to significantly improve stock price
forecasting, offering valuable insights for investors, financial analysts, and other market participants.

Keywords: Stock price; basis expansion; Convolutional Neural Network (CNN); deep learning; Long
Short-Term Memory (LSTM); Gated Recurrent Unit (GRU); N-BEATS.

1. INTRODUCTION

Time series analysis is a crucial tool used across
various fields to understand and predict future
values based on historical data. Its applications
span finance, economics, environmental studies,
and more, with one prominent use being the
analysis of stock prices [1]. In the financial
sector, accurate time series forecasting is
essential for making informed investment
decisions, managing risks, and developing
effective trading strategies [2]. For instance, the
S&P 500 index, a benchmark for the U.S. stock
market, is frequently analyzed through historical
price data provided by platforms such as Google
Finance. Forecasting these prices is vital for
traders, investors, and policymakers to navigate
market volatility and optimize financial outcomes.

A range of time series techniques exists for
forecasting stock prices, each with its strengths
and limitations. Traditional models like
AutoRegressive Integrated Moving Average
(ARIMA) are well-regarded for their simplicity and
effectiveness in capturing linear relationships
within data [3]. However, ARIMA models struggle
with nonlinear patterns and require assumptions
about data stationarity, limiting their applicability
in more complex scenarios [4]. As a result,
Machine Learning (ML) models emerged as a
more sophisticated alternative, offering enhanced
capabilities for handling nonlinearity and larger
datasets. Yet, ML models often demand
extensive manual feature extraction, which can
be challenging and labor-intensive [5].

The emergence of Deep Learning (DL) models
marks a significant leap forward in time series
forecasting, overcoming many of the limitations
associated with traditional and ML approaches(Li
and Bastos 2020). Early DL models, such as

Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks, were
pioneering in their ability to capture sequential
dependencies in time series data [6]. Despite
their advancements, these models often faced
challenges such as vanishing gradients and high
computational demands. Building on these initial
successes, the N-BEATS (Neural Basis
Expansion Analysis for Time Series) model
introduces a novel architecture that features
stacked blocks of fully connected layers for both
forecasting and backcasting. Unlike traditional
models, N-BEATS does not rely on time-series-
specific components like trend or seasonality,
allowing it to dynamically adapt to complex
patterns and enhance predictive accuracy [7].

Various studies have explored a range of
statistical, Machine Learning (ML), and Deep
Learning (DL) algorithms for stock price
prediction. Conejo et al. [8] investigated day-
ahead electricity price forecasting using ARIMA
models. For stock price prediction, [9] combined
statistical, ML, and DL approaches, and [10]
introduced the ELM-AE method, which
surpasses existing techniques in terms of Mean
Squared Error (MSE). Tripathi and Sharma [11]
found that Deep Neural Networks (DNNs)
outperformed LSTM and CNN-LSTM models in
Bitcoin price prediction Singhal V et al. [12]
improved stock market forecasting by combining
wavelet decomposition with N-BEATS. Aslam et
al. [13] achieved promising results in predicting
wind power using the N-BEATS model and
Sbrana and Lima de Castro [14] investigated its
performance in forecasting cryptocurrency.
Nayak et al. [15] utilized Deep learning
techniques including NBEATS for improved
forecasting of price of TOP crops in India. These
studies underscore the efficacy of ML and DL
algorithms for price forecasting and the

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

485

importance of selecting models suited to the
specific characteristics of the data.

In this study, we employed the novel deep
learning approach N-BEATS alongside baseline
models such as CNN, LSTM, and GRU to
forecast S&P 500 stock prices sourced from
Google Finance. By utilizing these advanced
models, the research aims to improve the
accuracy of stock price predictions and provide
valuable insights into the stock market. This
comprehensive analysis highlights not only the
effectiveness of N-BEATS compared to
traditional models but also its potential for
enhancing stock price forecasting.

2. MATERIALS AND METHODS

2.1 Data Description

This study utilizes the Closing price of S&P 500
stock, which contains 1340 observations from
January 1, 2018, to April 30, 2023. The data is
obtained from 'Google Finance'.

2.2 Deep Learning Techniques used for
Forecasting Price Series

2.2.1 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) excels in
identifying visual patterns and is distinguished by
its specialized architecture. Central to a CNN are
three key types of layers: convolutional layers,
sub-sampling layers, and fully connected layers.

The architecture typically consists of multiple
convolutional and sub-sampling layers stacked
together, followed by a series of fully connected
layers (see Fig. 1).

Convolutional layers are designed to process
inputs from neighboring nodes, similar to how
cells in the visual cortex work. These layers use
shared local weights, which not only help
conserve memory but also improve classification
performance. Following the convolutional layers,
sub-sampling layers perform non-linear down-
sampling, reducing the dimensionality of the
data. This reduction lowers local sensitivity and
computational complexity, enhancing the
network’s ability to learn features and patterns
more effectively [16].

The final stage involves fully connected layers,
which are akin to those in standard neural
networks. These layers conduct extensive matrix
computations with all activations and nodes. After
the convolutional and sub-sampling layers have
extracted features, the fully connected layers are
responsible for reasoning and generating the
model's output. CNNs are trained through
backpropagation, which optimizes the model to
minimize the difference between actual and
target output values. This layered structure,
combining convolutional, sub-sampling, and fully
connected layers, enables CNNs to adeptly
recognize patterns and features in visual data,
making them highly effective for a range of
computer vision applications.

Fig. 1. One-dimension convolutional neural network (1D-CNN) architecture

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

486

2.2.2 Long Short-Term Memory (LSTM)

LSTM was introduced by Hochreiter and
Schmidhuber in 1997 to address a critical
limitation of traditional Recurrent Neural
Networks (RNNs)—their inability to effectively
manage long-term dependencies in sequences.
The LSTM model integrates specialized gating
mechanisms into the RNN architecture to
overcome this issue. These gates include the
forget gate, the input gate, and the output gate,
all implemented as sigmoid layers as shown in
Fig. 2 [17].

The forget gate determines the relevance of
previous information by deciding whether to
retain or discard it. It outputs 𝑓𝑡 , which ranges
from 0 to 1, where 0 means complete discarding
and 1 indicates full retention. The calculation for
the forget gate is:

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

Similarly, the input gate determines which new
values should be updated by processing the
previous output (ℎ𝑡−1) and the current input (𝑥𝑡) .
It uses a weight matrix 𝑊𝑖, a sigmoid function 𝜎,

and a bias term 𝑏𝑖, generating a candidate value

for the current cell state 𝐶𝑡̂:

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

The candidate cell state value 𝐶𝑡̂ is calculated
using the hyperbolic tangent function:

𝐶𝑡̂ = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

The updated cell state 𝐶𝑡 combines the forget

gate output 𝑓𝑡 , the previous cell state 𝐶𝑡−1 , the

input gate output 𝑖𝑡, and the new candidate state

𝐶𝑡̂:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̂

The output gate then determines how much of
the cell state should affect the current output.
The output 𝑜𝑡 is calculated using a sigmoid

function, and the final output ℎ𝑡 is derived by
applying the hyperbolic tangent function to the
current cell state and scaling it by the output gate
value:

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

In the LSTM model’s fully connected layer, the
Rectified Linear Unit (ReLU) activation function is
utilized, while the mean square error (MSE)
serves as the loss function for performance
optimization [18].

2.2.3 Gated Recurrent Unit (GRU)

Introduced in 2014, Gated Recurrent Units
(GRUs) offer a streamlined and more efficient
alternative to Long Short-Term Memory (LSTM)
layers [19]. Unlike LSTMs, which use separate
input and forget gates, GRUs combine these into
a single update gate and unify the hidden and
cell states as shown in Fig. 2, resulting in fewer
parameters and reduced computational

Fig. 2. LSTM architecture

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

487

complexity. This simplification enhances the
efficiency and cost-effectiveness of GRUs.

GRUs are designed to prioritize recent
information, which is often more relevant for
predicting future outcomes compared to older
data. This focus on recent events helps GRUs
perform effectively by retaining pertinent
information while discarding less relevant past
data. The GRU's reset gate controls how much of
the previous information is discarded, while the
update gate manages the integration of new
information into the current state [20].

The update gate is computed as:

𝑍𝑡(𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)

The reset gate is calculated using:

𝑅𝑡(𝑅𝑒𝑠𝑒𝑡 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑅 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑅)

The new candidate state, 𝐻̂𝑡 , is obtained by

applying the hyperbolic tangent (𝑡𝑎𝑛ℎ) function
to the product of the reset gate and the previous
hidden state:

𝐻̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡∗(ℎ𝑡−1, 𝑥𝑡)] + 𝑏𝑧)

This calculation allows the GRU to manage the
flow of relevant information effectively. The final
hidden state, ℎ𝑡 , is computed by combining the

previous hidden state and the new candidate
state, moderated by the update gate:

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ𝑡−1 + 𝑍𝑡 ∗ ℎ𝑡)

In GRUs, the update and reset gates, controlled
by sigmoid activation functions, regulate the
recurrent connections and input values. The
weight matrices 𝑊𝑍 , 𝑊𝑍 and 𝑊 , along with the
bias terms 𝑏𝑍 and 𝑏𝑅 , determine how input
values are processed within these gates. The
final hidden state represents a blend of the
previous state and the new candidate, adjusted
according to the update gate’s output.

2.2.4 Neural basis expansion analysis for

interpretable time series forecasting
(N-BEATS)

N-BEATS enhances data interpretation and
prediction accuracy through basis expansion, a
technique that transforms the original data into a
higher-dimensional space to capture non-linear
relationships [21]. Unlike traditional methods,
which manually select basis expansion
techniques, N-BEATS employs a neural network
to automatically determine and optimize the most
effective data augmentation strategy during
training. This adaptive approach allows the
model to tailor the basis expansion to the specific
characteristics of the dataset, resulting in
improved interpretability and predictive
performance.

Fig. 3. GRU architecture

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

488

For univariate point forecasting, the objective is

to predict a future value vector 𝑦 ∈ 𝑅𝐻 =
[𝑦𝑇+1, 𝑦𝑇+2, … , 𝑦𝑇+𝐻] over a forecast horizon 𝐻
which is depicted in Fig. 4. This prediction is

based on a historical time series [𝑦1, … , 𝑦𝑇] ∈ 𝑅𝑇
and uses a lookback window of length ≤ 𝑇 ,

represented by 𝑥 ∈ 𝑅𝑡 = [𝑦𝑇−𝑡+1, … , 𝑦𝑇] , ending
with the last observed value 𝑦𝑇 . The predicted

values are denoted as 𝑦̂.

N-BEATS is built on three core principles:
creating a simple yet expressive deep learning
architecture, avoiding dependence on time-
series-specific components like trend or
seasonality, and ensuring model extendibility for
better interpretability. The model inputs the
lookback period, while the forecast period
contains actual values used to evaluate
predictions. The input sequence length is usually
a multiple of the forecast horizon H, ranging from
2H to 7H. The architecture consists of stacked
layers, with each stack composed of multiple
blocks. Each block has four fully connected
layers and generates two outputs: a forecast and
a backcast. The forecast predicts future values,
while the backcast allows for immediate
comparison with the input sequence, helping
assess the model's fit. Each block calculates
expansion coefficients 𝜃 and performs basis

expansion 𝑔, enhancing the model's adaptability
and accuracy [15].

In this architecture, only the first block receives
the actual input sequence. Subsequent blocks
are given the residuals from the previous block,
ensuring that each block captures information
missed by the previous one. The basic block,
depicted in Fig. 4, has a fork architecture. The

𝑙𝑡ℎ block processes its input 𝑥𝑙 and produces two
vectors, 𝑥̂𝑙 and 𝑦̂𝑙 . For the first block, 𝑥𝑙
represents the input history lookback window
ending with the last observed value. For later
blocks, 𝑥𝑙 comprises residual outputs from earlier
blocks. Each block generates a forward forecast
𝑦̂𝑙 of length 𝐻 and a backcast 𝑥̂𝑙, an estimate of
𝑥𝑙 within the block's functional space.

Internally, each basic block includes two
components. The first part is a fully connected

network that produces forward 𝜃𝑙
𝑓

and the

backward 𝜃𝑙
𝑏 expansion coefficients. The second

part involves backward 𝑔𝑙
𝑏 and the forward 𝑔𝑙

𝑓

basis layers, which project the expansion

coefficients 𝜃𝑙
𝑓

 and 𝜃𝑙
𝑏 onto basis functions to

generate the backcast 𝑥̂𝑙 and the forecast

outputs 𝑦̂𝑙.

Fig. 4. The architecture of N-BEATS

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

489

The operations of the first part of the 𝑙𝑡ℎ block is
defined by:

ℎ𝑙,1 = 𝐹𝐶𝑙,1(𝑥𝑙), ℎ𝑙,2 = 𝐹𝐶𝑙,2(ℎ𝑙,1), ℎ𝑙,3 =

𝐹𝐶𝑙,3(ℎ𝑙,2), ℎ𝑙,4 = 𝐹𝐶𝑙,4(ℎ𝑙,3) 𝜃𝑙
𝑏 =

𝐿𝑖𝑛𝑒𝑎𝑟𝑙
𝑏(ℎ𝑙,4), 𝜃𝑙

𝑓
= 𝐿𝑖𝑛𝑒𝑎𝑟𝑙

𝑏(ℎ𝑙,4)

where the Linear layer represents a simple linear

projection, 𝜃𝑙
𝑓

= 𝑊𝑙
𝑓

ℎ𝑙,4. The FC layer refers to a

fully connected layer with ReLU non-linearity.
This part aims to predict the forward expansion

coefficients 𝜃𝑙
𝑓

 to optimize the accuracy of 𝑦̂𝑙 and

the backward expansion coefficients 𝜃𝑙
𝑏 to

produce an estimate of 𝑥𝑙, facilitating the removal
of irrelevant components for downstream blocks.

The second part of the block maps the expansion

coefficients 𝜃𝑙
𝑓

 and 𝜃𝑙
𝑏 to outputs using basis

layers:

𝑦̂𝑙 = 𝑔𝑙
𝑓

(𝜃𝑙
𝑓

) , 𝑥̂𝑙 = 𝑔𝑙
𝑏(𝜃𝑙

𝑏)

which is further defined as:

𝑦̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑓

𝑣𝑖
𝑓

𝑑𝑖𝑚(𝜃𝑙
𝑓

)

𝑖=1

, 𝑥̂𝑙 = ∑ 𝜃𝑙,𝑖
𝑏 𝑣𝑖

𝑏

𝑑𝑖𝑚(𝜃𝑙
𝑏)

𝑖=1

where 𝑣𝑖
𝑓
 and 𝑣𝑖

𝑏 are the forecast and backcast

basis vectors, respectively, and 𝜃𝑙,𝑖
𝑓

 is the 𝑖𝑡ℎ

element of 𝜃𝑙
𝑓
.

The N-BEATS architecture diverges from
classical residual networks by introducing a
hierarchical doubly residual topology
with two residual branches: one for the
backcast prediction and another for the forecast
branch. This topology is described by:

𝑥𝑙 = 𝑥𝑙−1 − 𝑥̂𝑙−1, 𝑦̂ = ∑ 𝑦̂𝑙
𝑙

For the first block, the input is the model-level
input 𝑥 , so 𝑥1 ≡ 𝑥 . Subsequent blocks analyze
residuals from previous blocks, removing well-
approximated signal portions to simplify the
forecasting task for later blocks. This structure
aids in smoother gradient backpropagation. Each
block produces a partial forecast 𝑦̂, aggregated
first at the stack level and then at the overall
network level. The final forecast 𝑦̂ is the sum of
these partial forecasts. The model’s design

allows for arbitrary 𝑔𝑙
𝑏 and 𝑔𝑙

𝑓
 functions,

enhancing transparency to gradient flows. When

𝑔𝑙
𝑏 and 𝑔𝑙

𝑓
 are structured and shared across

layers, the model gains interpretability through
the aggregation of meaningful partial forecasts.
The residual connections capture missed
information from previous blocks, with the final
forecast being a composite of all partial
predictions.

2.3 Data Pre-processing and

Normalization

To achieve effective fitting of deep learning
models and ensure unbiased extrapolation, it is
crucial to preprocess and normalize the data
series. Normalization transforms the values of
both series to a uniform range between 0 and 1
while maintaining their original shape. This
process enhances the robustness of model
training and improves the model’s ability to
generalize patterns from the data. The
normalization is carried out using the following
formula:

𝑋′
𝑡 =

𝑋𝑡 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 represent the minimum
and maximum values of the series,
respectively, and 𝑋𝑡 is the value at time t. The

result, 𝑋′
𝑡, is the normalized value

2.4 Hyperparameter Tuning

Here, we provide a comprehensive overview of
the hyperparameters used in developing the
various forecasting models. The fine-tuning
process utilized the random search method for
hyperparameter optimization. Specifically,
random search was employed to optimize
hyperparameters for the DL models. Training
accuracy was evaluated across a range of
randomly selected hyperparameter
combinations, with the final configuration
selected based on the highest achieved
accuracy, as detailed in Table 1. In our study,
we implemented four different algorithms: CNN,
LSTM, GRU, and N-BEATS to forecast the S&P
500 stock price.

2.5 Performance Measure

a) Mean Absolute Percentage Error (MAPE)

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖 − 𝑦̂

𝑦𝑖

|

𝑁

𝑖=1

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

490

b) Mean Absolute Error (MAE)

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂|

𝑁

𝑖=1

c) Root Mean Squared Error (RMSE)

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝑖=1

where, 𝑁 is the number of observations in the

dataset, 𝑦𝑖 is the true values of the variable being
predicted and 𝑦̂ is the predicted values of the
variable.

3. RESULTS AND DISCUSSION

3.1 Descriptive Statistics

Table 2 presents the descriptive statistics of the
experimental datasets utilized in this study, while

Fig. 5 depicts the actual time series plot of the
S&P 500 stock price. The graphs
clearly indicate that the data exhibit non-
stationarity, a finding further confirmed by
statistical tests.

The S&P 500 stock price, ranging from $ 2237.4
to $ 4796.56, demonstrates significant volatility,
as reflected in the standard deviation detailed in
Table 2. The data is positively skewed and
exhibits platykurtic behavior, indicating a non-
normal distribution, which is further validated by
the Shapiro-Wilk test. The dataset comprises
1340 observations, divided into a training set
(80%) and a testing set (20%). The training set,
containing 1072 observations, is utilized for
model development, while the testing set, with
268 observations, is employed for model
validation and post-sample prediction. This
partitioning strategy enables a comprehensive
analysis of S&P 500 stock price dynamics,
ensuring robust model performance evaluation
across both subsets.

Table 1. The hyperparameters and their values of different models used for comparison

Models Hyperparameters Values

N-BEATS Fully connected layers 4

Lookback 7

Horizon 1

Stacks 30

Neurons per layer 512

Epochs 500

Loss function MAE

Optimizer Adam

CNN Filters 128

Kernel size 5

Batch size 128

Epochs 100

Loss function MAE

Optimizer Adam

LSTM Inputs 128

Activation function ReLU

Batch size 128

Epochs 100

Loss function MAE

Optimizer Adam

GRU Inputs 128

Activation function ReLU

Batch size 128

Epochs 100

Loss function MAE

Optimizer Adam

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

491

Table 2. Descriptive statistics of S&P 500 stock price.

Descriptive Statistics Price (U.S. dollars ($) per share)

Minimum 2237.40
Mean 3484.71
Maximum 4796.56
Standard Deviation 663.27
Coefficient of Variation (%) 19.03
Skewness 0.23
Kurtosis -1.35
Shapiro-Wilk’s test 0.92 (<0.0001)

The value in the parentheses indicates p-value

Fig. 5. Time series plot of S&P 500 stock price series

3.2 Test for Stationarity

Stationarity is a crucial factor in forecasting
models and is assessed in this study using the
Augmented Dickey-Fuller (ADF) test [22,23]. The
ADF test's null hypothesis suggests that the
series is non-stationary or possesses a unit root.
However, the results, as shown in Table 3,
confirm that the series is stationary.

3.3 Performance Evaluation

The performance evaluation of each model on
the S&P 500 stock price dataset was conducted
using metrics such as MAPE, MAE, and RMSE,
as detailed in Table 4. The N-BEATS model
consistently outperformed the others, achieving
the lowest MAPE of 1.15, MAE of 45.85, and
RMSE of 59.42. These results underscore the N-
BEATS model's exceptional capability in
capturing the underlying patterns and dynamics
of the S&P 500 stock price series, resulting in
more accurate forecasts.

Traditional models such as ARIMA often fall short
in capturing nonlinear patterns, while parametric
nonlinear models like GARCH are limited by their
restrictive assumptions. To overcome these
limitations, researchers have increasingly turned
to machine learning (ML) methods. However,
ML's predictive accuracy can falter with large
datasets due to the necessity for manual feature
extraction. As a result, deep learning (DL)
architectures, including CNN, LSTM, and GRU,
have gained popularity for modeling stock price
data. This study introduces the N-BEATS
algorithm for forecasting the S&P 500 price
series from Google Finance. Comparative
analysis reveals that N-BEATS surpasses CNN,
LSTM, and GRU in predictive accuracy,
achieving the lowest values for key performance
metrics like MAPE, MAE, and RMSE, as
depicted in Fig. 6. These results highlight N-
BEATS' superior effectiveness in
capturing trends and patterns within time series
data.

0

1000

2000

3000

4000

5000

6000

0
1
-0

2
-2

0
1
8

0
3
-0

2
-2

0
1
8

0
5
-0

1
-2

0
1
8

0
6
-2

8
-2

0
1
8

0
8
-2

7
-2

0
1
8

1
0
-2

4
-2

0
1
8

1
2
-2

4
-2

0
1
8

0
2
-2

5
-2

0
1
9

0
4
-2

4
-2

0
1
9

0
6
-2

1
-2

0
1
9

0
8
-2

0
-2

0
1
9

1
0
-1

7
-2

0
1
9

1
2
-1

6
-2

0
1
9

0
2
-1

4
-2

0
2
0

0
4
-1

5
-2

0
2
0

0
6
-1

2
-2

0
2
0

0
8
-1

1
-2

0
2
0

1
0
-0

8
-2

0
2
0

1
2
-0

7
-2

0
2
0

0
2
-0

5
-2

0
2
1

0
4
-0

7
-2

0
2
1

0
6
-0

4
-2

0
2
1

0
8
-0

3
-2

0
2
1

0
9
-3

0
-2

0
2
1

1
1
-2

9
-2

0
2
1

0
1
-2

7
-2

0
2
2

0
3
-2

8
-2

0
2
2

0
5
-2

5
-2

0
2
2

0
7
-2

6
-2

0
2
2

0
9
-2

2
-2

0
2
2

1
1
-1

8
-2

0
2
2

0
1
-2

0
-2

0
2
3

0
3
-2

1
-2

0
2
3

P
ri

ce

Date

S&P 500 (Closing Price)

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

492

Table 3. ADF test result of S&P 500 stock price

Data Augmented Dickey-Fuller Remarks

Statistic 𝑝 - value

S&P 500 stock price -1.13 0.69 Stationary

Table 4. Results obtained by different models on the testing dataset for S&P 500 stock price

Models MAPE (%) MAE RMSE

CNN 1.61 63.80 80.95
LSTM 1.70 67.69 85.19
GRU 1.66 66.12 83.53
N-BEATS 1.15 45.85 59.42

Table 5. Diebold–Mariano test results of S&P 500 stock price

Models CNN LSTM GRU N-BEATS

CNN - -8.01
(0.82)

-3.38
(0.95)

5.92
(0.004)

LSTM -8.01
(0.82)

- 9.50
(0.86)

3.64
(0.008)

GRU -3.38
(0.95)

9.50
(0.86)

- 5.08
(0.005)

N-BEATS 5.92
(0.004)

3.64
(0.008)

5.08
(0.005)

-

Values in the parentheses indicates p-value

Fig. 6. Bar diagram of evaluation criteria of S&P 500 series on the testing dataset

N-BEATS' impressive performance is largely due
to its innovative architecture, which utilizes
stacked blocks of fully connected layers for both
backcasting and forecasting. This architecture is

further enhanced by the incorporation of residual
links and double residual stacking, which
significantly improves the model's learning
capacity and prediction accuracy. The model's

MAPE (%)

MAE

RMSE

0

20

40

60

80

100

CNN LSTM GRU N-BEATS

MAPE (%) MAE RMSE

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

493

adaptability and flexibility allow it to effectively
manage diverse time series patterns and various
data types. Validation through the Diebold-
Mariano (DM) test underscores N-BEATS'
superior forecasting accuracy when compared to
other benchmark models, as detailed in Table 5.
This confirms N-BEATS capability to capture
complex patterns and its efficacy across different
forecasting tasks. While the current N-BEATS
model does not include spatiotemporal modeling,
future adaptations aimed at integrating such data
could enhance its utility, particularly in scenarios
involving spatial-temporal dynamics. Overall, this
study demonstrates that N-BEATS is a highly
effective and advanced tool for time series
forecasting, offering significant benefits for both
practitioners and researchers in the field.

4. CONCLUSION

Accurate stock price forecasting is essential for
making well-informed investment decisions and
maintaining market stability. Traditional
approaches like ARIMA often struggle with the
intricacies of nonlinear patterns, leading to the
adoption of machine learning (ML) techniques.
Despite their advantages, ML models encounter
difficulties with extensive manual feature
extraction, particularly when dealing with large
datasets. The development of deep learning (DL)
architectures, including CNNs, LSTMs, GRUs,
and notably N-BEATS, has marked a significant
advancement in stock price prediction. N-BEATS
stands out due to its unique architecture, which
incorporates stacked blocks, residual
connections, and a double residual stacking
approach, enabling it to effectively capture
complex time series patterns. This innovative
framework not only enhances prediction
accuracy but also performs exceptionally well in
comparative analyses and validation tests, such
as the Diebold-Mariano test. While the N-BEATS
model is powerful for time series forecasting, it
has limitations such as reduced interpretability,
high computational cost, and sensitivity to
hyperparameters, which may lead to overfitting,
especially in smaller datasets. It is primarily
designed for univariate forecasting and lacks
support for spatiotemporal modeling, limiting its
application in more complex scenarios. Future
research could focus on integrating
spatiotemporal data, developing hybrid models,
and expanding the model to multi-variate
forecasting. Applying N-BEATS across various
financial markets could also test its
generalizability and robustness. Overall, N-
BEATS is a robust and advanced tool for stock

price forecasting, providing valuable insights for
both practitioners and researchers.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of manuscripts.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Sezer OB, Gudelek MU, Ozbayoglu AM.
Financial time series forecasting with deep
learning: A systematic literature review:
2005–2019. Applied soft computing 90
2020;(2020):106181.

2. Shahvaroughi Farahani M, Razavi
Hajiagha SH. Forecasting stock price using
integrated artificial neural network and
metaheuristic algorithms compared to time
series models. Soft computing.
2021;25(13):8483–8513.

3. LIU H. Time Series Predictive Control in
Robotics. EDP Sciences; 2024.

4. Racocha K. Impact of drought on
commodity market forecasting; 2020.

5. Azevedo K, Quaranta L, Calefato F,
Kalinowski M. A multivocal literature review
on the benefits and limitations of
automated machine learning tools. arXiv
preprint arXiv:2401.11366; 2024.

6. Hewamalage H, Bergmeir C, Bandara K.
Recurrent neural networks for time series
forecasting: Current status and future
directions. International Journal of
Forecasting. 2021;37(1):388–427.

7. Wang X, Li C, Yi C, Xu X, JWang, Zhang Y.
Eco forecast: An interpretable data-driven
approach for short-term macroeconomic
forecasting using N-BEATS neural
network. Engineering Applications of
Artificial Intelligence.
2022;114;(2022):105072.

8. Conejo AJ, Plazas MA, Espinola R, A. B.
Molina. Day-ahead electricity price
forecasting using the wavelet transform
and ARIMA Models. IEEE Transactions on
Power Systems. 2005;20(2):1035–1042.

9. Mehtab S, Sen J. A time series analysis-
based stock price prediction using machine

Naik et al.; J. Sci. Res. Rep., vol. 30, no. 9, pp. 483-494, 2024; Article no.JSRR.122969

494

learning and deep learning models.
International Journal of Business
Forecasting and Marketing Intelligence.
2020;6(4):272.

10. Patarwal P, Dagar A, Bala R, Singh R.
Financial time series forecasting using
deep learning network. In 2018;23–33.

11. Tripathi B, Sharma RK. Modeling bitcoin
prices using signal processing methods,
bayesian optimization, and deep neural
networks. Computational Economics.
2023;62(4):1919–1945.

12. Singhal V, Mathew J, and Agarwal M.
Fusion of Wavelet decomposition and N-
BEATS for improved stock
market forecasting. Research Square;
2022.

13. Aslam M, Kim JS, Jung J. Multi-step ahead
wind power forecasting based on dual-
attention mechanism. Energy Reports 9.
2023;(December 2023):239–251.

14. Sbrana A, Lima de Castro PA. N-BEATS
Perceiver: A Novel Approach for Robust
Cryptocurrency Portfolio Forecasting.
Computational Economics.
2023;(September 22, 2023).

15. Nayak GHH, Alam MW, Singh KN, Avinash
G, Kumar RR, Ray M, Deb CK. Exogenous
variable driven deep learning models for
improved price forecasting of TOP crops in
India. Scientific Reports
2024a;14(1):17203.

16. Sánchez-Reolid R, López de la Rosa F,
López MT, Fernández-Caballero A. One-
dimensional convolutional neural networks
for low/high arousal classification from
electrodermal activity. Biomedical Signal

Processing and Control. 2022;71(January
2022):103203.

17. Marino D, Amarasinghe K, Manic M.
Building Energy Load Forecasting using
Deep Neural Networks; 2016.

18. Bakir H, Chniti G, Zaher H. E-Commerce
price forecasting using LSTM Neural
Networks. International Journal of Machine
Learning and Computing 2018;8(2):169–
174.

19. Chung Junyoung, Gulcehre Caglar, Cho
KyungHyun, and Bengio Yoshua. 2014.
Evaluation of datasets. In: NIPS 2014
Workshop on Deep Learning; 2014.

20. Nayak GHH, Alam W, Singh KN, Avinash
G, Ray M, Kumar RR. Modelling monthly
rainfall of India through transformer-based
deep learning architecture. Modeling Earth
Systems and Environment
2024b;10(3):3119–3136.

21. Oreshkin BN, Dudek G, Pełka P, Turkina E.
N-BEATS neural network for mid-term
electricity load forecasting. Applied
Energy.2021;293 (July 2021):116918.

22. Avinash G, Ramasubramanian V, Ray
MRK, Paul S, Godara GHH, Nayak RR,
Kumar B. Manjunatha S, Dahiya M,
Iquebal A. Hidden Markov guided Deep
Learning models for forecasting highly
volatile agricultural commodity prices.
Applied Soft Computing. 2024;158 (June
2024):111557.

23. Li AW, Bastos GS. Stock market
forecasting using deep learning and
technical analysis: A systematic review.
IEEE access. 2020;8(2020):185232–
185242.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s)
and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/122969

https://www.sdiarticle5.com/review-history/122969

