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ARTICLE

A Generalized and Parallelized SSIM-Based Multilevel
Thresholding Algorithm
Ikram Boubechala, Rachid Seghira, and Redha Benzidb

aLaSTIC Laboratory, Department of Computer Science, University of Batna 2, Algeria; bLAAAS
Laboratory, Department of Electronics, University of Batna 2, Algeria

ABSTRACT
Multilevel thresholding is a widely used technique to perform
image segmentation. It consists of dividing an input image into
several distinct regions by finding the optimal thresholds accord-
ing to a certain objective function. In this work, we generalize the
use of the SSIM quality measure as an objective function to solve
the multilevel thresholding problem using empirically tuned
swarm intelligence algorithms. The experimental study we have
conducted shows that our approach, producing near-exact solu-
tions, is more effective compared to the state-of-the-art methods.
Moreover, we show that the computation complexity has been
significantly reduced by adopting a shared-memory parallel pro-
gramming paradigm for all the algorithmswe have implemented.

Introduction

Image analysis and interpretation are widely used in various fields, such as
computer vision, remote sensing, pattern recognition, medical imaging,
environment modeling, etc. In this context, segmentation (Pal and Pal
1993; Zhang, Fritts, and Goldman 2008) is considered as one of the essential
processing techniques which consists in dividing the input image into homo-
geneous regions with respect to particular characteristics, such as: color,
texture structure and intensity (Fu and Mui 1981; Gonzalez and Woods
2006). The aim of such dividing is to extract the meaningful parts which
are easy to analyze and interpret.

There are two fundamental categories of methods used to perform image
segmentation: Similarity-based methods and Discontinuity-based algorithms.
The first category partitions an image into similar regions according to a set
of predefined criteria. Thresholding, region growing, region splitting and
merging are classified under this category. In the second category, the
image is partitioned based on abrupt changes in intensity, such as edges
(Bhargavi and Jyothi 2014; Gonzalez and Woods 2006; Kaur and Kaur 2014).
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Thresholding plays an important role in image segmentation (Haralick
and Shapiro 1985). It is useful to extract objects from the background or to
distinguish objects from others having distinct gray levels. Among the
techniques proposed in the literature, there are those that determine the
same threshold for the whole image, named: global thresholding, and those
which determine a threshold for each pixel of the image, called: local or
adaptive thresholding (Ballard and Brown 1982; Chehdi and Coquin 1991;
Davis, Rosenfeld, and Weszka 1975; De Albuquerque, Esquef, and Mello
2004).

In global thresholding, we can distinguish between bi-level thresholding, the
process that divides an image into two groups (binarization) using only one
threshold value, and multilevel thresholding where the image is segmented into
several classes, i.e. the process requires more than one threshold (Dey,
Bhattacharyya, and Maulik 2014; Gonzalez and Woods 2006; Sun, Zhang, and
Wang 2016). Furthermore, bi-level and multilevel thresholding can also be classi-
fied into parametric and non-parametric approaches (Cheriet, Said, and Suen
1998; Hou, Hu, and Nowinski 2006; Reddi, Rudin, and Keshavan 1984; Sezgin
and Sankur 2004). Parametricmethods assume that the histogram can be approxi-
mated using, for instance, linear combination of probability density functions
(PDFs) (Snyder et al. 1990), whereas non-parametric methods are based on
optimizing objective functions to search the values of optimal thresholds (Kittler
and Illingworth 1986), such as Otsu between class variance (Otsu 1979) and
Kapur’s entropy (Kapur, Sahoo, and Wong 1985). Both Otsu and Kapur were
initially developed to perform bi-level thresholding, then they were extended to
solve the multilevel thresholding problem. It is worthy to note that multilevel
thresholding is a challenging task because the histogram’s multimodality of some
images makes the selection difficult and, most importantly, it affects the effective-
ness of the objective function.

More recently, the most used image-quality measures, Structural SIMilarity
(SSIM) (Wang et al. 2004) and Peak Signal to Noise Ratio (PSNR) (Wang and
Bovik 2009) have been used as objective functions that are optimized through
different meta-heuristic algorithms to enhance the thresholds selection. To the
best of our knowledge, the first use of SSIM to solve the thresholding problem
was proposed in (Balabanian, Sant’Ana da Silva, and Pedrini 2017). In their
work, the authors prove the efficiency of the SSIM against the Otsu approach.
However, the proposed solution targets the local bi-level thresholding only. In
(Kotte, Kumar, and Injeti 2018) the PSNR is used as an objective function for an
improved differential search algorithm to solve the multilevel thresholding
problem. Their experimental study shows that the performances of the PSNR
approach are better compared to the classical Otsu and Kapur methods.
However, the authors do not seem to benefit from the exhaustive search to
tune their algorithms in order to further improve their obtained PSNRs. In
addition, no comparison against the use of SSIM measure is reported.
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Consequently, in our work, we enhance the use of SSIM and PSNR measures
to achieve the best performances compared to the state-of-the-art methods. To
do so, we have first generalized the use of SSIMmeasure to themultilevel case, in
comparison to (Balabanian, Sant’Ana da Silva, and Pedrini 2017). Then, we have
implemented the exhaustive search algorithm using the SSIM, PSNR, and Otsu
as objective functions in order to obtain, when it is possible, the exact best
solutions. Afterward, we have selected three well-known and widely used swarm
intelligence algorithms PSO, Firefly, and Bat andwe have empirically tuned their
parameters in order to produce near-exact solutions. In this context, the imple-
mentation of the exhaustive search is interesting since it allows to check the
accuracy of the meta-heuristic solutions (the closest solutions to the global
optimum). But, of course, the execution time, especially when using the exhaus-
tive search, increases exponentially according to the number of regions.
Therefore, we have also implemented all the algorithms in parallel using the
shared-memory parallel programming standard (OpenMP) (Dagum and
Menon 1998), which has led to a significant enhancement of the algorithms’
performances. The accuracy of the used approaches (employing PSNR and
SSIM) are compared against Otsu-based multilevel thresholding and against
each other using a set of 110 images.

The remainder of this paper is organized as follows: Section 2 briefly
presents some related works. In Section 3, we formulate the problem of
optimum thresholding methods and present the Otsu between-class variance
method. Section 4 introduces the swarm intelligence algorithms we have used
in this work, namely, PSO, Firefly, and Bat. In Section 5, we present and
explain the proposed approach. Section 6 shows the experimental study we
have conducted. Finally, concluding remarks are given in section 7.

Related Works

Multilevel thresholding attempts to find the optimal thresholds by optimizing an
objective function like Otsu, Kapur, Tsallis, Cross Entropy, etc. (Bakhshali and
Shamsi 2014; Manic, Priya, and Rajinikanth 2016; Panda et al. 2017). However,
the computational time of classical exhaustive methods increases exponentially
with the number of thresholds. Therefore, to overcome this weakness, meta-
heuristic algorithms have been widely used to solve the multilevel thresholding
problem (Horng and Jiang 2010; Sathya and Kayalvizhi 2011). Among them, we
can cite: Genetic Algorithm (GA) (Hammouche, Diaf, and Siarry 2008;
Manikandan et al. 2014; Muppidi et al. 2015; Yin 1999), Particle Swarm
Optimization (PSO) (Liu et al. 2015; Maitra and Chatterjee 2008; Wei and
Kangling 2008), Artificial Bee Colony Optimization (ABC) (Cuevas and Sossa
et al. 2013; Horng and Jiang 2010), Cuckoo Search (CS) (Bhandari, Kumar, and
Singh 2015; Suresh and Lal 2016), Firefly Algorithm (FF) (Vennila and
Thamizhmaran 2017), etc.
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Even though the previous solutions reported in the literature improve the
execution time, they usually consider only the traditional objective functions
(Otsu, Kapur, Tsallis, etc.). But recently, the SSIM and PSNR quality measures
have been used as objective functions to solve the thresholding problem in
(Balabanian, Sant’Ana da Silva, and Pedrini 2017) and (Kotte, Kumar, and
Injeti 2018), respectively. In both works, it has been shown that the new
approaches, using SSIM and PSNR, are more efficient than the classical Otsu
and Kapur-based methods. However, the previous use of SSIM did not consider
the multilevel thresholding of gray-scale images, and the use of PSNR did not
show significant improvement in solution quality compared to Otsu and Kapur
methods. Hence, both approaches deserve, from our point of view, to be further
explored and enhanced. In our work, we benefit from the parallel computing
and the exhaustive search to empirically tune existing swarm intelligence algo-
rithms (PSO, Bat, and Firefly) in order to achieve the best multilevel threshold-
ing accuracy compared to the ones reported in the state-of-the-art methods.

Problem Formulation of Optimum Thresholding Methods

The objective of multilevel thresholding is to find the thresholds based on the
image histogram in which the segment regions of the segmented image
satisfy a required property. The optimal thresholds can be determined by
optimizing (minimizing or maximizing) an objective function which uses the
selected thresholds as parameters. The process can be outlined as follows
(Bhandari et al. 2016; Oliva and Cuevas 2016):

The segmented image is generated using quantization,where the grey level value
attributed to all pixels belonging to the same class is calculated by their average.

C1  p if 0 � p< th1
C2  p if th1 � p< th2
Ci  p if thi � p< thiþ1
CM  p if thm � p< L� 1

where p represents each pixel in the image I which can be denoted in grey
scale level ðL ¼ 0; 1; . . . ; 255Þ classified into (M ¼ mþ 1Þ classes
ðC1;C2; :::;CMÞ using m thresholds ðth1; th2; :::; thmÞ.

Among the most used and efficient traditional techniques proposed to
perform image thresholding, we find the Otsu between-class variance method
(Otsu 1979). It aims to maximize the between-class variance Equation (1) as
follows:

w0 ¼
Pth1�1

i¼0 pi;w1 ¼
Pth2�1

i¼th1 pi; . . . ;wM ¼
PL�1

i¼thM pi
μ0 ¼

Pth1�1
i¼0

ipi
w0
; μ1 ¼

Pth2�1
i¼th1

ipi
w1
; . . . ; μM ¼

PL�1
i¼thM

ipi
wM

μT ¼
PL�1

i¼0 ipi
σ0 ¼ w0ðμ0 � μTÞ2; σ1 ¼ w1ðμ1 � μTÞ2; . . . ; σM ¼ wMðμM � μTÞ2

APPLIED ARTIFICIAL INTELLIGENCE 1269



Where: wi, μi and μT represent the probabilities of class occurrence, the
class mean level and the total mean level of the original image, respectively.

th� ¼ fth�1; th�2; � � � ; th�k; � � � ; th�M�1g ¼ argmax
0�thk�ðL�1Þ

XM
i¼0

σi (1)

Otsu has been proven as an efficient method for image thresholding.
However, the computational complexity increases exponentially with the
number of thresholds. Therefore, multilevel thresholding is often treated as
an optimization problem solved by meta-heuristic techniques. In the follow-
ing, we briefly present the swarm intelligence algorithms we are implemented
in sequential and in parallel.

Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence technique based on the
study of collective behavior in a decentralized and self-organized way (Beni
and Wang 1993). It is widely used for solving optimization problems; a set of
individuals browse the research space in order to exploit all the areas that
appear promising, without being trapped by a local optimum. Several
approaches have been proposed in the literature, which are originally
inspired by nature; particularly the biological systems (Bonabeau, Dorigo,
and Theraulaz 1999). In the following, we briefly present the swarm intelli-
gence algorithms we have used in our work. Namely PSO, Bat, and FireFly.

Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) is a meta-heuristic method based on
collective intelligence used for solving optimization problems. This method
was initially developed by (Kennedy and Eberhart 1995). It was inspired from
the social behavior of flocks of birds and school of fish whenever they were
looking for food.

PSO (Shi and Eberhart 1999; Zhou and Shi 2011) is a population-based
algorithm which uses a swarm of particles; each particle represents a potential
solution to the problem of optimization. The position of every particle is
influenced by the best position visited by itself (pbest) and by the position of
the best particle in the whole population (gbest). It is an iterative algorithm that
repeats the following steps until some stopping criteria is satisfied:

● Evaluate the fitness value of each particle.
● Update the global best fitness value and the corresponding position
(gbest), do the same for the personal best position (pbest).

● Update velocity and position of each particle with equations (2) and (3).
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vtþ1id ¼ wtvtid þ C1r
t
1ðpbesttid � xtidÞ þ C2r

t
2ðgbesttd � xtidÞ (2)

xtþ1id ¼ vtþ1id þ xtid (3)

where d represents the problem’s dimension (number of thresholds); xtid is
the position of the ith particle of the population at iteration t and vtid its
velocity; C1 and C2 are the cognitive and social coefficients, respectively; r1
and r2 are two random numbers belonging to the range [0, 1]; wt is the
inertia weight defined as:

wt ¼ wmax � ðwmax � wminÞ
iterartion max

t (4)

Firefly Algorithm

The Firefly algorithm (FF) was developed by (X.-S. Yang 2008). It is a swarm
intelligence algorithm based on the brightness’ emission/absorption and the
mutual attractive behavior of fireflies. Theoretically, FF is based on the
following three main rules:

● All fireflies are unisex, involving that every firefly of the population can
attract each other.

● The attractiveness is proportional to the brightness and they both
decrease as their distance increases. Thus, for any two flashing fireflies,
the less bright one will move towards the brighter one. If there is no
brighter one than a particular firefly, it will move randomly.

● The brightness of a firefly is determined by the objective function value.

The movement of the firefly i toward the most attractive firefly j (brighter)
is calculated by:

xtþ1i ¼ xti þ β0e
�γri;jðxtj � xtiÞ þ αðrandð0; 1Þ � 0:5Þ (5)

where the second term is due to the attraction that varies according to the
distance between firefly i and firefly j, and α is a random number.

ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD�1
d¼0
ðxi;d � xj;dÞ2

vuut (6)

β0 is the attractiveness at r = 0.

Bat Algorithm

The bat algorithm (Bat) is a recent meta-heuristic approach proposed by
Yang (X. Yang 2010; X.-S. Yang and Hossein Gandomi 2012). The idea
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behind this algorithm is to mimic the echolocation behavior of micro-bats.
All bats of the population are related to a location xi and a velocity vi, in a D
dimensional search space.

The bat algorithm consists essentially of three steps:

● Calculate the current position of each bat with equation (9) if rtþ1i is
inferior to a number generated randomly else by (12), and its velocity
with equation (8).

● Update the loudness and the pulse emission at every iteration with
equations (10) and (11), respectively.

● Update the current best solution among all the bats (gbest).

fi ¼ fmin þ ðfmax � fminÞ randð0; 1Þ (7)

vtþ1i ¼ vti þ ðxti � x�Þ fi (8)

xtþ1i ¼ xti þ vtþ1i (9)

Atþ1
i ¼ αAt

i (10)

rtþ1i ¼ r0i ð1� e�γtÞ (11)
xtþ1i ¼ xti þ �At (12)

Where x� is the current global best solution, At is the average loudness of all
bats, α and γ are constants.

The main objective of the nature-inspired methods described above is to
determine the maximum or the minimum of mathematical functions, called
objective (fitness) functions. All these algorithms have been found to be very
efficient in solving global optimization problems.

In this paper, the above algorithms are applied to evaluate the effectiveness
of PSNR and SSIM objective functions in solving the multilevel thresholding
problem. Parallel versions of these algorithms are also proposed and imple-
mented in order to improve their execution time.

Proposed Approach

In our work, summarized in Figure 1, we propose to further explore and
improve the use of the well-known quality metrics SSIM and PSNR as
objective (fitness) functions to achieve the best multilevel thresholding results
compared to those reported in (Balabanian, Sant’Ana da Silva, and Pedrini
2017) and (Kotte, Kumar, and Injeti 2018). Note that the first work uses the
SSIM to solve the bi-level thresholding problem only, while the second one,
based on the PSNR metric, targets the multilevel case but seems to be less
efficient compared to our work, as shown in section 6. The optimal
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thresholds based on the SSIM and PSNR approaches are obtained using
equations (13) and (14), respectively.

th� ¼ fth�0; th�1; � � � ; th�k; � � � ; th�M�1g ¼ argmax
0�thk�ðL�1Þ

SSIMðx; yÞ (13)

th� ¼ fth�0; th�1; � � � ; th�k; � � � ; th�M�1g ¼ argmax
0�thk�ðL�1Þ

PSNRðx; yÞ (14)

where x and y are original and segmented images, and M is the number of
regions in image y.

We have first implemented a parallel exhaustive search algorithm enabling
to determine the best thresholds for a given objective function (OF). By the
best thresholds, we mean the ones leading to the exact maximum value of the
OF. This, in turn, is performed by computing the OF for all the possible
combinations of thresholds and selecting the one with the best value of OF.
Of course, the complexity of this computation is exponential according to the
number of thresholds, but our parallel algorithm is able to produce exact
solutions, in a reasonable time, when using Otsu, and until 3 and 4 thresh-
olds when using SSIM and PSNR, respectively. Based on the solutions
produced by the parallel exhaustive-search thresholding algorithm, we have
tuned three swarm intelligence algorithms: PSO, Firefly, and Bat (4) so that
they can produce near-exact solutions more quickly. Indeed, we have imple-
mented these algorithms, in sequential and in parallel, to produce the best
thresholds using SSIM, PSNR, and Otsu as objective functions. The PSNR
and SSIM values are calculated between the given image and the thresholded
one; a higher value of them indicates a better quality of thresholding.
A detailed comparative study is provided in section 6. In the following, we
present in some details the SSIM and PSNR metrics we have used as objective
functions.

Figure 1. Overview of our work.
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Structural SIMilarity

Structural SIMilarity index method (SSIM) (Wang et al. 2004) is a quality
metric proposed to determine the structural similarity between two images.
Its value ranges between 0 and 1 and indicates the correlation between the
original image and the processed one, the closer it is to 1 the more the two
images are similar. SSIM is defined mathematically as:

SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y � C1Þðσx2 þ σy2 þ C2Þ (15)

Where μx is the average of the original image x; μy is the average of the
thresholded image y; μy is the average of the thresholded image y; σx2 is

the variance of x; σy2 is the variance of y; σxy is the covariance of x and y;

C1 ¼ ðk1 � LÞ2 and C2 ¼ ðk2 � LÞ2 (L ¼ 255; k1 ¼ 0:01 and k2 ¼ 0:03).

Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) is also a quality measure widely used to
assess image quality. (Wang and Bovik 2009) the PSNR attempts to deter-
mine the distortion of a processed image relative to its source. The higher the
PNSR is, the more the reconstructed image is similar to the original one. Due
to the use of logarithm, the PSNR is expressed in decibels (dB). The PSNR
value is defined as follows:

PSNR ¼ 20 log10
255ffiffiffiffiffiffiffiffiffiffi
MSE
p

� �
(16)

where MSE (mean square error) is expressed as:

MSE ¼
PM�1

i¼0
PN�1

j¼0 ðxði; jÞ � yði; jÞÞ2
M � N

(17)

Here, x and y are original and segmented images of size M � N, respectively.

Parallel Implementation of Meta-heuristic Algorithms

It is well known that the quality of the solutions produced by the meta-heuristic
algorithms are improved iteratively until they reach satisfactory values. That is to
say, the more the algorithm iterates, the best the obtained solution is.
Unfortunately, increasing the number of iterations could lead to huge computa-
tion time. To cope with this drawback, it is usually recommended to perform the
computations in parallel. In our work, we use the shared-memory parallel
programming standard OpenMP (Dagum and Menon 1998) in order to reduce
the execution time of the different meta-heuristics we are interested in. We have
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also implemented a parallel exhaustive multilevel thresholding algorithm to
obtain, when it is possible, the exact solution. This later is compared to the
solutions obtained by the meta-heuristic algorithms so that it is possible to
decide which of them is more accurate.

Results and Discussion

The methods proposed in our work have been implemented in C language
using the OpenMP parallel programming library on Visual Studio. The test
machine consists of an Intel® CoreTM i56-4590S, 3.00G Hz processor with 8
G of RAM and Windows 7 × 64 Pro operating system.

Image Dataset

The experimental study has been carried on 110 grey level images, six of them
are the standard test images 512 × 512 pixels (Lena, Barbara, Baboon,
Cameraman, Pepper, and GoldHill). The rest are taken from the Berkeley
Segmentation Dataset (BSD 500)1. Due to space limitation, detailed results are
given for only two images (Lena and Cameraman) shown in Figure 2. Other
results are given in terms of the mean values obtained for the 110 test images.

In all the meta-heuristic algorithms (PSO, Firefly, and Bat), we have used
the same size of population (40) and applied the same number of iterations
(100 iterations). The overall parameters for the three algorithms are shown in
Tables 1, 2 and 3, respectively. Note that these are not the default parameter
values of the algorithms, which did not give satisfactory solutions. The values
we have reported are those we have found better for the multilevel thresh-
olding problem. They are obtained by manually tuning the algorithms based
on the exact solutions produced by the parallel exhaustive search algorithm.

Solution Quality Analysis

Performance Evaluation of the PSO, FF and Bat Algorithms
Tables 4, 5 and 6 present the fitness values obtained, for Lena and Cameraman
images, by the different algorithms and their corresponding optimal thresholds.

(a) lena. (b) Cameraman. (c) Lena histogram. (d) Cameraman histogram.

Figure 2. Original images and their corresponding histograms.
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The results show that the PSO algorithm generates the closest solutions to the
ones obtained by the exhaustive search compared to FF and Bat algorithms. The
visual results of this experiment are shown in Figures 3, 4, 5 and 6 when
considering 2, 3, 4 and 5 thresholds, respectively.

The results obtained by (Kotte, Kumar, and Injeti 2018) using the PSNR as
objective function for their improved differential search algorithm (IDSA)
are shown in Table 7 (for Lena and Cameraman images). We can clearly see
that the PSNR values obtained by their method are significantly lower than
ours reported in Table 5. Indeed, the maximum values of PSNR they obtain
are 22.7919 and 23.6858 for Lena and Cameraman images, respectively.
While we obtain 29.52 and 29.41 for the same images. This is well justified

Table 1. Parameters used for PSO.
Parameters Value

Population size 40
max iteration 100
Lower bound 0
Upper bound 255
w_min 0.4
w_max 1.2
C_1 2
C_2 2.1
v_min −50
v_max 50

Table 2. Parameters used for Bat.
Parameters Value

Population size 40
max iteration 100
Lower bound 0
Upper bound 255
f_min 0.001
f_max 0.009
α 0.9
γ 0.005
A_max 50

Table 3. Parameters used for Firefly.
Parameters Value

Population size 40
max iteration 100
Lower bound 0
Upper bound 255
α 0.9
γ 0.00001
β0 1
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since the thresholds we obtain are closer to the exact thresholds compared to
those produced by (Kotte, Kumar, and Injeti 2018).

Since the meta-heuristic algorithms are stochastic, the results found after
each run may not be identical. Therefore, we have conducted another test to
analyze the accuracy and the stability of the three algorithms using the mean
and the standard deviation of the objective function values. In particular,

(a) otsu PSO (b) otsu PSO (c) ssim PSO (d) ssim PSO (e) psnr PSO (f) psnr pso

(g) otsu FF (h) otsu FF (i) ssim FF (j) ssim FF (k) psnr FF (l) psnr FF

(m) otsu Bat (n) otsu Bat (o) ssim Bat (p) ssim Bat (q) psnr Bat (r) psnr Bat

Figure 3. 2_ level thresholding for lena and cameraman images according to the thresholds
obtained by the different objective functions using PSO, FF and Bat algorithms.

(a) otsu PSO (b) otsu PSO (c) ssim PSO (d) ssim PSO (e) psnr PSO (f) psnr pso

(g) otsu FF (h) otsu FF (i) ssim FF (j) ssim FF (k) psnr FF (l) psnr FF

(m) otsu Bat (n) otsu Bat (o) ssim Bat (p) ssim Bat (q) psnr Bat (r) psnr Bat

Figure 4. 3_ level thresholding for lena and cameraman images according to the thresholds
obtained by the different objective functions using PSO, FF and Bat algorithms.
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a lower value of standard deviation indicates higher stability, and a higher
mean value of the objective function indicates a higher accuracy.

The mean values of the PSNR and SSIM objective functions are given
in Table 8, where we can observe that the PSO-based method finds higher
mean value of the objective functions than the Firefly and Bat-based
methods. The standard deviation of the algorithms is given in Table 9,
which shows that the PSO-based method has a lower standard deviation

(a) otsu PSO (b) otsu PSO (c) ssim PSO (d) ssim PSO (e) psnr PSO (f) psnr PSO

(g) otsu FF (h) otsu FF (i) ssim FF (j) ssim FF (k) psnr FF (l) psnr FF

(m) otsu Bat (n) otsu Bat (o) ssim Bat (p) ssim Bat (q) psnr Bat (r) psnr Bat

Figure 5. 4_ level thresholding for lena and cameraman images according to the thresholds
obtained by the different objective functions using PSO, FF and Bat algorithms.

(a) otsu PSO (b) otsu PSO (c) ssim PSO (d) ssim PSO (e) psnr PSO (f) psnr PSO

(g) otsu FF (h) otsu FF (i) ssim FF (j) ssim FF (k) psnr FF (l) psnr FF

(m) otsu Bat (n) otsu Bat (o) ssim Bat (p) ssim Bat (q) psnr Bat (r) psnr Bat

Figure 6. 5_ level thresholding for lena and cameraman images according to the thresholds
obtained by the different objective functions using PSO, FF and Bat algorithms.
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than Firefly and Bat-based methods. Hence, the PSO-based method is
more stable and gives more accurate thresholds compared to the Firefly
and Bat methods.

Performance of the SSIM, PSNR, and Otsu-based Approaches
In this experiment, we use the SSIM, PSNR, and Otsu as objective functions
to be optimized by the PSO algorithm, since it is the one that gives the better
results compared to FF and Bat algorithms as discussed before. The quality of
the thresholded images is evaluated using the PSNR and SSIM metrics.

Tables 10 and 11 respectively show the PSNR and SSIM values obtained by
the PSO algorithm, for Lena and Cameraman thresholded images, when
using SSIM, PSNR, and Otsu as objective functions. We can notice that
our generalized SSIM-based method results in better image quality compared
to PSNR and Otsu. For instance (Lena with th = 3, SSIM = 0.98154), using
SSIM objective function compared to Otsu (SSIM = 0.94664) and PSNR

Table 7. Results obtained by the improved differential search algorithm (IDSA) (Kotte, Kumar,
and Injeti 2018).
Test image TH PSNR Thresholds Test image TH PSNR Thresholds

Lena 2 16.3330 69, 121 Cameraman 2 18.5141 96, 147
3 18.4791 59, 105, 152 3 20.6560 84, 124, 158
4 20.7278 32, 77, 116, 159 4 22.3218 53, 100, 132, 160
5 22.7919 31, 69, 101, 130, 172 5 23.6858 43, 92, 121, 148, 168

Table 8. Mean values of the objective functions obtained by PSO, FF, and Bat methods.
PSNR Objective function SSIM Objective function

Test images TH PSO FF Bat PSO FF Bat

Lena 2 22,967 22,802 22,888 0,944753 0,932601 0,938599
3 26,042 25,293 25,589 0,981988 0,968078 0,970431
4 28,197 26,653 27,057 0,994832 0,980758 0,980972
5 29,487 28,056 28,052 0,998110 0,985730 0,987207

Cameraman 2 24,4 24,218 24,238 0,972141 0,968338 0,969033
3 26,068 25,704 25,867 0,982038 0,978315 0,979081
4 27,884 26,862 27,166 0,989312 0,984866 0,985090
5 29,401 28,082 28,308 0,993077 0,988070 0,988952

Table 9. Standard deviation of the objective functions obtained by PSO, FF, and Bat methods.
PSNR Objective function SSIM Objective function

Test images TH PSO FF Bat PSO FF Bat

Lena 2 0 0,180179 0,120916 0,000936 0,009503 0,004812
3 0,003042 0,528541 0,391998 0,001827 0,009892 0,007396
4 0,004682 0,623804 0,558027 0,002581 0,006826 0,005618
5 0,052787 0,729292 0,61101 0,001930 0,006903 0,004498

Cameraman 2 0 0,193174 0,209822 0,000126 0,002861 0,004518
3 0,001672 0,279028 0,570294 0,000296 0,002729 0,001853
4 0,004352 0,413611 0,356242 0,000398 0,002227 0,001402
5 0,011042 0,542404 0,384759 0,000613 0,002111 0,001916
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(SSIM = 0.97639). This is confirmed using the whole set of test images (110
images), as shown in Figures 7 and 8 where we can clearly notice that when
considering PSNR as a quality metric, the results obtained using SSIM,
PSNR, and Otsu as objective functions are comparable. But when we con-
sider SSIM as a quality metric, the results obtained using SSIM as objective
function are significantly better compared to PSNR and Otsu objective
functions, which confirms the advantage of using SSIM as a quality measure,
as first stated in (Wang et al. 2004).

Computation Time Comparisons

Table 12 shows a comparison in terms of execution time, for Lena andCameraman
images, between PSO, FF and Bat algorithms using Otsu, SSIM and PSNR as
objective functions. On the one hand, we can see that the Otsu method is
significantly faster than SSIM and PSNR functions, and that SSIM is about twice
slower than PSNR. On the other hand, one can notice that our implementation of
PSO is slightly slower than the ones of Firefly and Bat algorithms. The comparison
of computation times for the whole image dataset is given in Table 13 as the mean
execution times for the 110 images. Again, we can notice that PSO is slightly slower
than Firefly and Bat algorithms, and that SSIM is about twice slower than PSNR.
But as we have concluded in the previous experiments, combining the PSO
algorithm with SSIM as its objective function leads to the best results. Hence, it
is worth considering our generalized SSIM-basedmethod using the PSO algorithm
with our tuned parameters for the problem of multilevel thresholding problem.

Table 10. Comparison of PSNR values using PSO.
Test images Th Otsu SSIM PSNR

Lena 2 22.96 22.84 22.96
3 26.03 25.52 26.04
4 28.17 27.75 28.19
5 29.49 28.25 29.52

Cameraman 2 24.39 24.39 24.40
3 26.06 25.98 26.06
4 27.88 27.82 27.88
5 29.37 29.31 29.41

Table 11. Comparison of SSIM values using PSO.
Test images Th Otsu SSIM PSNR

Lena 2 0.92563 0.94469 0.92627
3 0.94664 0.98154 0.97639
4 0.98055 0.99329 0.98797
5 0.98463 0.99672 0.98786

Cameraman 2 0.97055 0.97219 0.97055
3 0.98079 0.98222 0.97972
4 0.98671 0.98939 0.98710
5 0.99253 0.99398 0.99114
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The extra computation time induced by this method can easily be coped with by
adopting the parallel version of our algorithm. Indeed, we have implemented all
the algorithms discussed above in parallel using the parallel programming library

Figure 8. Average SSIM of PSO algorithm over all images (110).

Figure 7. Average PSNR of PSO algorithm over all images (110).

Table 12. Execution time comparison between different methods using PSO, FF and Bat methods
(in seconds).

Otsu SSIM PSNR

Test images TH PSO FF Bat PSO FF Bat PSO FF Bat

Lena 2 0.039 0.028 0.033 8.518 8.517 8.283 3.713 3.526 3.323
3 0.040 0.031 0.036 9.375 9.063 8.955 4.508 4.368 3.775
4 0.041 0.040 0.040 10.015 9.422 9.422 5.304 4.446 4.711
5 0.062 0.058 0.056 10.702 10.015 9.921 5.897 4.665 5.413

Cameraman 2 0.012 0.009 0.005 2.122 2.121 2.075 0.905 0.889 0.858
3 0.020 0.012 0.009 2.340 2.153 2.200 1.138 1.061 0.967
4 0.016 0.014 0.012 2.621 2.309 2.371 1.341 1.108 1.108
5 0.020 0.018 0.015 2.761 2.465 2.542 1.560 1.248 1.217
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OpenMP. The obtained execution times for the different algorithms and the whole
test images are summarized in Table 14 where we can see that, with only four
processor cores, we have gained an acceleration between 2.42 and 3.10 for all the
implemented algorithms, as shown in Table 15. For instance, the acceleration of
our generalized SSIM-based method using the PSO algorithm with tuned para-
meters is 2.98 (with th = 5). Finally, it is worth noting that these accelerationsmight
be more important by using a more powerful machine with a higher number of
processors.

Conclusion

Multilevel thresholding is among the widely used techniques in the context of
image segmentation. The success or failure of image analysis and interpreta-
tion depend on the accuracy of the used segmentation technique.

In our work, we have generalized the use of the SSIM quality measure to
solve the multilevel thresholding problem in order to achieve the best
performances compared to the state-of-the-art methods using PSNR and
Otsu as objective functions. We have implemented the exhaustive search
algorithm using the SSIM, PSNR, and Otsu as objective functions in order to
obtain, when it is possible, the exact best solutions. Afterward, we have

Table 13. Execution time comparison for 110 images between different algorithms using PSNR
and SSIM objective functions (in seconds).

PSNR objective function SSIM objective function

TH PSO FF Bat PSO FF Bat

2 250,778 245,307 230,375 579,455 572,888 560,002
3 303,864 282,912 269,264 631,776 610,622 599,703
4 360,789 311,506 307,997 685,317 642,96 636,799
5 405,339 345,363 342,647 731,507 671,726 681,76

Table 14. Comparison of parallel execution time for 110 images between different algorithms
using PSNR and SSIM objective functions (in seconds).

PSNR objective function SSIM objective function

TH PSO FF Bat PSO FF Bat

2 90,547 87,631 86,264 194,713 191,673 187,955
3 106,221 95,796 91,385 214,324 200,116 193,249
4 128,225 104,721 100,221 240,727 217,45 221,727
5 142,949 113,028 118,544 245,388 235,097 233,637

Table 15. Obtained speedups using parallel implementation.
PSNR Objective function SSIM Objective function

TH PSO FF Bat PSO FF Bat

2 2,7695 2,7993 2,6705 2,9759 2,9888 2,9794
3 2,8606 2,6634 2,9464 2,9477 3,0513 3,1032
4 2,8137 2,4293 3,0731 2,8468 2,9568 2,8719
5 2,8355 2,3969 2,8904 2,9810 2,8572 2,9180
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selected three well-known and widely used swarm intelligence algorithms
PSO, Firefly, and Bat and we have empirically tuned their parameters in
order to produce near-exact solutions. All these algorithms have also been
implemented in parallel using OpenMP.

The experimental study performed on a hundred and one images has
shown that the SSIM approach gives better thresholds compared to the
other thresholding techniques (PSNR and Otsu). Moreover, the PSO algo-
rithm is found to be more accurate compared to Firefly and Bat. The
produced thresholds are almost the same as those obtained by the exhaustive
search or very close to them. On the other hand, we have shown that the use
of parallelism improves considerably the computation time of the different
algorithms, which allows to obtain more precise results in quite reasonable
times.

Note

1. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
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