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ARTICLE
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aDepartment of Electrical Engineering, King Fahd University of Petroleum & Minerals, Dhahran-Saudi 
Arabia; bCenter for Engineering Research, Research Institute, King Fahd University of Petroleum & 
Minerals, Dhahran, Saudi Arabia; cSchool of Computing, Telkom University, Bandung, Indonesia; 
dManaging Director, CESI Middle East, UAE

ABSTRACT
Accurate prediction of future wind speed is important for wind 
energy integration into the power grid. Wind speeds are usually 
measured and predicted at lower heights, while modern wind 
turbines have hub heights of about 80–120 m. As per under
standing, this is first attempt to analyze predictability of wind 
speed with height. To achieve this, wind data was collected 
using Laser Illuminated Detection and Ranging (LiDAR) system 
at 10 m, 20 m, 40 m, 90 m, 120 m, 200 m, 250 m and 300 m 
heights. The collected data is used for training and testing an 
Artificial Neural Network (ANN) for hourly wind speed prediction 
for each of the future 12 hours, using 48 previous hourly values. 
Careful analyses of short term wind speed prediction at different 
heights and future hours show that wind speed is predicted 
more accurately at higher heights. For example, the mean 
absolute percent error decreases from 0.25 to 0.12 correspond
ing to heights 10 to 300 m, respectively for the 6th future hour 
prediction, an improvement of around 50%. The performance of 
ANN method is compared with hybrid genetic algorithm and 
ANN method namely GANN. Results showed that GANN out
performed ANN for most of the heights for prediction of wind 
speed at the future 6th hour. Results are also confirmed on 
another data set and other methods.
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Introduction

Renewable energy penetration in to the energy mix and wind in particular is 
increasing globally due to its environmental friendly nature, fast technological 
development, commercial acceptance, ease of operation and maintenance, and 
competitive cost. Additionally, the deployment of wind power projects reduce 
the dependence on fossil fuels and consequently cut down the greenhouse 
gases (GHG) emissions into the local atmosphere. As a sign of progress in 
wind power sector, in 2017, the cumulative global wind power installed 
capacity reached 539.581 GW with new addition of 52.573 GW (2018). At 
present, there are more than 90 countries contributing toward wind power 
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capacity build up including 9 countries with more than 10 GW and 29 more 
than 1 GW of installed capacities globally.

Wind speed is a highly fluctuating meteorological parameter both in tem
poral and spatial domains. It changes with time of the day, month of the year, 
and also day of the year. This fluctuating nature of wind speed creates an 
uncertainty in the availability of continuous power and more importantly the 
stability of the grid. Hence, understanding the variability of the wind speed at 
a location with time is critical for quality and magnitude of wind energy yield 
which is directly proportional to the cube of wind speed. It simply means that 
proper understanding of the wind speed variations based on long term histor
ical wind data and its future trends is a pre-requisite for the success of huge 
investments. Hence, when planning the deployment of a farm at a site, an 
indispensable task is to conduct on-site wind speed measurements at least for 
one complete year (the longer the better) and analyze it to extract information 
on the variability of the wind (Akdag,et.al 2010; Aksoy, Toprak, and Aytek 
2004; Carapellucci and Giordano 2013; Catalão, Pousinho, and Mendes 2011; 
Chang 2011; Jaramillo and Borja 2004). The variability of wind covers a wide 
spectrum of time-scales starting from seconds, hours, days, months, year, and 
to several years. So, predicting the wind speed accurately ahead of time, few 
hours to days, is important for power producers, grid operators, energy 
managers, and lastly the consumers (Kaneko et al. 2011). Advance but accurate 
knowledge of wind speed availability ahead of time can be utilized in applica
tions, such as wind power dispatch planning, power quality, grid operation, 
reserve allocation, and generation scheduling.

Artificial intelligence techniques such as Artificial Neural Networks (ANN) 
(Mohandes, Rehman, and Halawani 1998), neuro-fuzzy systems (Mohandes 
et al. 2007), support vector machines (Mohandes et al. 2004), modes decom
position based low rank multi-kernel ridge regression (Ye et al. 2017), 
Gaussian process regression combined with numerical weather predictions 
(Niu et al. 2018), Singular Spectrum Analysis and Adaptive Neuro Fuzzy 
Inference System (Moreno, Coelho, and Dos 2018), optimal feature selection 
and a modified bat algorithm with the cognition strategy (Hoolohan, Tomlin, 
and Cockerill 2018), and spatial model (Naik, Bisoi, and Dash 2018) have been 
applied to capture the nonlinear trend of the wind speed data series. Since 
early 2000, trend of using hybrid methodologies has emerged in the literature 
in which more than one models are combined to achieve better forecasts of 
wind speed in future and spatial domains (Liu et al. 2010; Liu et al. 2012; 
Sfetsos 2000). These modern machine learning methods are very useful and 
provide relatively better estimates both in time and spatial domains as can be 
seen from wide ranging applications like performance prediction of thermo
siphon solar water heaters (Kalogirou, Panteliou, and Dentsoras 1999), ana
lysis of absorption systems (Şencan, Yakut, and Kalogirou 2006), sizing of 
photovoltaic systems (Mellit, Kalogirou, and Drif 2010, 2010) ground 
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conductivity map generation (Kalogirou et al. 2015), and solar radiation 
forecasting (Voyant et al. 2017).

Akçay and Filik (2017) developed a framework based on data de-trending, 
covariance-factorization via subspace method and one and/or multi-step- 
ahead Kalman filter for the prediction of wind speed. The numerical experi
ments on the real data sets showed that the wind speed forecast particularly 
using multi-step-ahead filter outperformed persistence model based predic
tions. In another study, Filik and Filik (2017) used ANN based models in 
conjunction with weather parameters like ambient temperature and pressure 
and found good agreement between the measured and predicted values of 
wind speed. Santamaría-Bonfil, Reyes-Ballesteros, and Gershenson (2016) 
predicted wind speeds 1–24 hours ahead using hybrid methodology comprised 
of Support Vector Regression and showed better forecast compared to persis
tence and autoregressive models. Hu, Zhang, and Zhou (2016) introduced 
deep learning neural network technique to predict the wind speed and showed 
that the proposed approach reduced significantly the error between the pre
dicted and measured values.

Kang et al. (2017) proposed a hybrid Ensemble Empirical Mode 
Decomposition (EEMD) and Least Square Support Vector Machine 
(LSSVM) model to improve short-term wind speed forecasting precision. 
The results showed that the proposed hybrid model outperformed some of 
the existing methods such as Back Propagation Neural Networks (BP), Auto- 
Regressive Integrated Moving Average (ARIMA), and combination of 
Empirical Mode Decomposition (EMD). Liu et al. (2015) used combination 
of Secondary Decomposition Algorithm (SDA) and the Elman neural net
works and showed that the hybrid model performed better than the multi-step 
wind speed predictions. Wang, Wang, and Wei (2015) showed that Least 
Square Support Vector Machine and the Markov hybrid model performed 
better than other models for wind speed prediction. Marović, Sušanj, and 
Ožanić (2017) proposed ANN based wind speed prediction model for imple
mentation in the early warning system to announce the possibility of the 
harmful phenomena occurrence due to winds which proved to be accurate 
in terms of alerting the community ahead of time due to bad wind conditions. 
Shukur and Lee (2015) used artificial neural network and Kalman filter hybrid 
model to address the nonlinearity and uncertainty issues and reported to be 
accurate in comparison with measured values. Jianzhou et al. (2015), used 
support vector regression combined with seasonal index adjustment and 
Elman recurrent neural network techniques and obtained relatively better 
forecast compared to other models.

Koo et al. (2015) evaluated the accuracy of the wind-speed prediction using 
artificial neural networks in terms of correlation coefficients between actual 
and simulated wind-speed data for plain, coastal, and mountainous areas. The 
study concluded that the geographical location played important role in 
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prediction accuracy of wind speed. For hourly prediction, Wu et al. (2015) 
integrated single multiplicative neuron model with iterated nonlinear filters 
for updating the wind speed sequence accurately. The results indicated better 
performance of the proposed model compared to autoregressive moving 
average, artificial neural network, kernel ridge regression based residual active 
learning and single multiplicative neuron models. Zhang et al. (2016) used 
hybrid models (combination of empirical mode decomposition, feature selec
tion with artificial neural network, and support vector machine) for short term 
wind speed prediction and found better results compared to single ANN, 
SVM, traditional EMD-based ANN and EMD-based SVM models. 
Doucoure, Agbossou, and Cardenas (2016) used multi-resolution analysis of 
the time-series by means of Wavelet decomposition and artificial neural net
works and achieved around 29% reduction resources without affecting the 
predictability. Based on wavelet, wavelet packet, time series analysis, and 
artificial neural networks, Liu et al. (2013) developed three hybrid models 
[Wavelet Packet-BFGS, Wavelet Packet-ARIMA-BFGS and Wavelet-BFGS] 
and compared the performance with Neuro-Fuzzy, ANFIS (Adaptive Neuro- 
Fuzzy Inference Systems), Wavelet Packet-RBF (Radial Basis Function) and 
PM (Persistent Model). The results showed that the proposed hybrid models 
produced better results than the other models.

Most of the above methods use wind speed measurements and predictions 
at lower heights, while in reality wind energy is generated at hub height. At 
lower heights, the wind is influenced by ground activities such as heat of the 
ground, near surface turbulences and human activities. However, at higher 
heights (more than 80 m) these effects are minimized and better predictions 
are obtained. This paper utilizes machine learning method to predict wind 
speeds at different heights and analyses the predictability of wind speed with 
height. The paper is organized as follows: Section II discusses the methodol
ogy, while Section III is devoted to numerical experimental results. Section IV 
concludes the paper.

Methodology

As the focus of this paper is not the development of a new learning 
technique, rather our purpose is to analyze the predictability of wind speed 
with height. Therefore, we used the back propagation (BP) algorithm for 
training an ANN for short term wind speed prediction at different heights. 
However, at one specific future hour (6th hour ahead) we compare the 
performance of the BP with a hybrid system (GANN) that combines the 
Genetic Algorithm (GA) with BP to avoid being trapped in local optima. The 
Application of GA to find optimum initial weights and biases values for 
ANN has been shown to find a better global solution (Rosin et al. 1997; 
Doucoure, Agbossou, and Cardenas 2016; Reza 2013). In this paper the GA 
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is used along with the Levenberg-Marquardt (LM) method to enhance the 
search capability for optimum weights and bias values as illustrated in Figure 
1. The LM algorithm is an iterative approach combining gradient descent 
and Gauss-Newton methods to minimize a function (Marquardt 1963). 
Parameters change their values every iteration according to the following 
equation: 

Wkþ1 ¼Wk � JTJ þ λI
� �� 1JT y � �yð Þ (1) 

where Wkþ1and Wkare the values of the weights at ðkþ 1Þthandkth iterations, 
correspondingly. The Jacobian matrix J contains first derivatives of model 
output with respect to the optimizing parameters. Measured and predicted 
output values are denoted byyand�y, respectively. Increasing the damping 
parameterλdecreases the step size, and vice versa. Therefore, if a step is 
unacceptable, λshould be increased for a smaller step. If a step is accepted, λ 
is decreased in order to proceed more quickly in the correct descent direction, 
speeding up the convergence.

Figure 1. Training of ANN using genetic algorithm.
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For performance evaluation of the proposed method, several measures are 
used including mean absolute percent error (MAPE), mean square error 
(MSE), and the coefficient of determination (R2). These error parameters are 
calculated using the following equations (Rehman 2009):

(2) 

RMSE ¼
PN

i¼1 Mi � Eið Þ
2

N
(3) 

where N is the number of samples, M and E are the measured and the 
estimated values of the WS.

Experimental Results

The proposed study utilizes hourly averaged WS data collected by LiDAR 
system between April 2nd and 30th June 2015. The data was collected at 10, 20, 
40, 90, 120, 200, 250 and 300 m heights above ground level (AGL). Figure 2 
shows some measured hourly averaged wind speed data at different heights.

Wind speed at a particular hour is usually correlated with values at previous 
hours. Initial experiments indicated that using previous 48 hours WS values 
provide reasonable prediction at the future hours. This study forecasts wind 
speeds up to 12 hours ahead of time. To carry out this task, 12 different ANN 
models were built. The first ANN model uses previous 48 hours wind speed 
values as input to predict the WS at the first future hour as the output. 
The second model uses the same 48 wind speed values as input to predict 
the WS at the 2nd future hour. Similar models were developed to find the wind 
speed at 3rd to 12th future hour using the same previous 48 values as input.

The available data was divided into two parts, training and testing. Wind 
speed data starting from 2nd April to 20th June was used for training and 21st 

Figure 2. Measured wind speed at 10 m, 90 m and 300 m height.
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June to 30th June for testing. The number of inputs to the ANN was set to be 48 
and the number of output is one in all cases. Single hidden layer with 30 
hidden neurons was selected based on the cross validation error analysis. For 
the GANN model, ten initial populations were considered where each popula
tion represents a set of weights and bias values for ANN. Based on cross 
validation a maximum of 100 iterations, 0.8 crossover factor, and a mutation 
parameter of 0.01 were found to be the best fit for the model.

Results and Discussions

The present study predicts hourly average wind speeds up to 12 hours ahead at 
8 different heights. Separate ANN models are developed for predicting wind 
speeds at different hours and heights. A hybrid genetic algorithm and neural 
network method namely GANN (described above) is used to predict each of 
the future 12 hours ahead at all the heights. The results indicate that MAPE is 
always less than 0.45 (Table 1). It is also observed that MAPE values decrease 
with height. For example, for 1 hour predictions, the MAPE values decreased 
from 0.24 at 10 m to 0.13 at 300 m. Table 2 shows the RMSE between the 

Table 1. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) AT DIFFERENT HEIGHTS AND DIFFERENT 
PREDICTION HOURS.

10 m 20 m 40 m 90 m 120 m 200 m 250 m 300 m

1 Hour 0.24 0.21 0.20 0.14 0.16 0.14 0.14 0.13
2 Hour 0.26 0.22 0.22 0.15 0.16 0.14 0.15 0.14
3 Hour 0.23 0.21 0.20 0.17 0.16 0.14 0.13 0.13
4 Hour 0.25 0.23 0.19 0.15 0.17 0.16 0.14 0.13
5 Hour 0.25 0.22 0.20 0.16 0.18 0.16 0.16 0.14
6 Hour 0.25 0.23 0.22 0.16 0.17 0.16 0.14 0.12
7 Hour 0.31 0.26 0.27 0.19 0.19 0.18 0.17 0.15
8 Hour 0.29 0.25 0.26 0.22 0.18 0.18 0.17 0.17
9 Hour 0.37 0.32 0.28 0.22 0.23 0.22 0.20 0.18
10 Hour 0.37 0.33 0.29 0.20 0.22 0.23 0.19 0.18
11 Hour 0.42 0.37 0.33 0.28 0.26 0.26 0.21 0.24
12 Hour 0.40 0.35 0.32 0.30 0.28 0.27 0.23 0.25

Table 2. ROOT MEAN SQUARE ERROR (RMSE) AT DIFFERENT HEIGHTS AND DIFFERENT PREDICTION 
HOURS.

10 m 20 m 40 m 90 m 120 m 200 m 250 m 300 m

1 Hour 1.10 1.11 1.13 0.91 1.13 1.08 1.16 1.07
2 Hour 1.15 1.15 1.13 0.99 1.13 1.08 1.13 1.20
3 Hour 1.10 1.11 1.17 0.99 1.09 1.08 1.14 1.13
4 Hour 1.15 1.18 1.12 0.97 1.10 1.21 1.08 1.08
5 Hour 1.18 1.13 1.08 1.08 1.17 1.18 1.16 1.13
6 Hour 1.14 1.10 1.13 1.10 1.16 1.23 1.18 1.05
7 Hour 1.30 1.27 1.33 1.27 1.29 1.28 1.32 1.24
8 Hour 1.24 1.27 1.28 1.29 1.31 1.27 1.27 1.31
9 Hour 1.53 1.53 1.56 1.50 1.50 1.61 1.60 1.53
10 Hour 1.59 1.59 1.60 1.48 1.53 1.72 1.58 1.51
11 Hour 1.96 1.83 1.93 1.81 1.96 2.04 1.75 2.03
12 Hour 1.91 1.84 1.87 1.94 1.98 2.03 1.77 1.96
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predicted and measured WS values for each of the future 12 hours at different 
heights. Data in Table 2 indicates that WS prediction improvement with 
height is not as obvious as in the case of MAPE. However, it is noticed that 
RMSE values remain almost the same up to 6 hours predictions. At 10 m, the 
RMSE values increased from 1.10 to 1.91 m/s corresponding to hours 1 and 12, 
respectively. Table 3 shows the coefficient of determination R2 values between 
predicted and measured values. The data is an indicative of significant 
improvements in the prediction of WS with heights in all future hours.

The measured and the predicted WS at 10 m and 1 hour ahead are 
compared in Figure 3(a). The predicted WS are found to be in close agreement 
with the measured values and also follow the trend quite closely. The corre
sponding scatter plot between the measured and predicted WSs at hour 1, 
Figure 3(b), shows a coefficient of determination of 0.82. The predicted and 
the measured WSs at 12 hours show relatively poor comparison compared to 
that for 1 hour ahead of time predictions, Figure 3(c), but do follow the trend 
quite closely. The scatter diagram, Figure 3(d), resulted in R2 value of 0.591. At 
90 m, the comparison between the predicted and the measured WS values at 
1 hour (Figure 4(a)) is much better than that at 12 hours (Figure 4(c)). 
However, in both the cases the predicted WSs follow the trends of measured 
values closely. The scatter plots for 1 hour (Figure 4(b)) and 12 hours ahead of 
time predictions show less scatter with R2 value of 0.936 at 1 hour compared to 
that at 12 hours with R2 value of 0.702. Similar comparisons are made at 120 m 
and 300 m in Figure 5 and Figure 6, respectively. In all of these cases, it is 
confirmed that the comparisons between the predicted and measured values 
at hour 1 are much better than those at 12 hours ahead. This observation is 
further strengthened by the higher values of R2 at 1 hour ahead of time 
predictions than those at 12 hours ahead.

Table 3. COEFFICIENT OF DETERMINATION (R2) AT DIFFERENT HEIGHTS AND DIFFERENT 
PREDICTION HOURS.

10 m 20 m 40 m 90 m 120 m 200 m 250 m 300 m

1 Hour 0.82 0.87 0.86 0.94 0.90 0.94 0.94 0.95
2 Hour 0.82 0.85 0.86 0.93 0.90 0.95 0.95 0.95
3 Hour 0.82 0.86 0.84 0.93 0.91 0.94 0.94 0.95
4 Hour 0.80 0.83 0.85 0.93 0.91 0.93 0.95 0.96
5 Hour 0.81 0.85 0.87 0.90 0.89 0.93 0.94 0.95
6 Hour 0.81 0.86 0.90 0.89 0.90 0.93 0.94 0.96
7 Hour 0.76 0.80 0.81 0.88 0.87 0.93 0.93 0.94
8 Hour 0.83 0.82 0.84 0.86 0.88 0.93 0.94 0.94
9 Hour 0.67 0.73 0.74 0.82 0.84 0.90 0.89 0.92
10 Hour 0.68 0.70 0.76 0.85 0.83 0.87 0.91 0.91
11 Hour 0.62 0.66 0.67 0.75 0.75 0.83 0.89 0.87
12 Hour 0.59 0.57 0.67 0.70 0.74 0.86 0.88 0.86
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ANN and GANN Models Performance Comparison

In this section, the performance of ANN and GANN methods based on the 
predictions of WS at 6th future hour and at different heights is compared. The 
predicted WS values from the two methods are compared with the measure
ments. The values of the performance measures RMSE, MAPE, and R2 for 
both the methods are summarized in Table 4. The RMSE are around 1.1 m/s in 
case of ANN approach and always less than 1 m/s in case of GANN method. 
On the other hand, MAPE values decreased from 0.25 to 0.12 (almost 50%) 
corresponding to 10 m and 300 m heights; respectively in case of ANN method 
while these values decreased to 0.11 at 300 m from 0.21 at 10 m (a reduction of 
almost 48%) in case of GANN approach. Relatively smaller magnitudes of 
RMSE and MAPE along with the higher values of R2 are indicative of better 
performance of GANN model over ANN approach.

The WS values predicted using the two methods are compared with the 
measured ones at 10, 90, 120, and 300 m for the 6th hour and are shown Figure 
7. The corresponding scatter plots are also provided in this figure. It is evident 
from Figure 7(a, c, e, and g) that the comparisons between the predicted and 

Figure 3. Performance at height 10 m (a) Measured and predicted WS at 10 m height and 1 hour 
ahead (b) R2 for measured and predicted WS at 10 m height and 1 hour ahead (c) Measured and 
predicted WS at 10 m height and 12 hour ahead (d) R2 for measured and predicted WS at 10 m 
height and 12 hour ahead.
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measured WS values keep on improving with increasing height. This fact has 
also been confirmed by the corresponding scatter plots shown in Figure 7(b, d, 
f, and h). In these scatter plots, the R2 values are found to be larger in case of 
GANN methods based prediction compared to those based on ANN metho
dology. Furthermore the coefficient of determination values kept on increasing 
with height which shows better predictions at higher heights.

Predictability Analysis of WS with Heights

This sub-section is devoted to the analysis of the predictability of WS with 
heights. The MAPE and R2 values for WS predictions for each of 1 to 12 hours 
ahead at each height are compared in Figure 8 using ANN. It is seen that as the 
prediction period in future time domain increases, the MAPE values also 
increase (Figure 8(a)). In general, a slower increment is observed in the values 
of MAPE up to hours 6 and a bit faster at further longer time durations. It is 
also worth mentioning that as the height of prediction increases, the MAPE 
value decreases. The R2 values remained almost around 0.95 at 200, 250, and 
300 m predictions for all the future hours of prediction (Figure 8(b)). At 20 to 

Figure 4. Performance at height 90 m (a) Measured and estimated WS at 90 m height and 1 hour 
ahead (b) R2 for measured and predicted WS at 90 m height and 1 hour ahead (c) Measured and 
estimated WS at 90 m height and 12 hour ahead (d): R2 for measured and predicted WS at 90 m 
height and 12 hour ahead.
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120 m heights the R2 values between the predicted and the measured WSs are 
seen to be between 0.8 and 0.9 up to hours 6 and then decreased faster beyond 
(Figure 8(b)). Figure 9 shows the variation of MAPE and R2 with respect to 
heights using ANN. It can be observed that the performance measures MAPE 
and R2 improve with heights.

(A) Variation of R2 with respect to Height
To further validate the results, we analyzed the predictability of wind speed with 
height using another data set. This data set represents hourly averaged WS 
collected by LiDAR system between 20 June 2015 and 29 February 2016. The 
data is collected at 10, 80, 120, 160 and 180 m heights AGL. Furthermore, we 
compared the performances of several methods, namely, ANN, GANN, Support 
Vector Machine for regression (SVMR), and Auto-Regressive model (AR). For 
the machine learning methods, we used the same number of layers and units as 
used in the first data set. The MAPE and R2 values for WS predictions for 1 hour 
ahead at each height using all methods and the average performance of all 
methods are shown in Figure 10. The figures confirm the results obtained with 
the first data set that predictability of wind speed improves with heights. The 
MAPE values on average show a decreasing pattern with increasing heights. 

Figure 5. Performance at height 120 m (a) Measured and estimated WS at 120 m height and 1 hour 
ahead (b) R2 for measured and predicted WS at 120 m height and 1 hour ahead (c) Measured and 
estimated WS at 120 m height and 12 hour ahead (d) R2 for measured and predicted WS at 120 m 
height and 12 hour ahead.
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Additionally, the R2 values increase with increasing height, an indication of 
improved predictability.

Conclusions

The knowledge of future wind speed is helpful for the estimation of available 
wind power which is critical for utility grid planning and operation. Typically, 
wind speed measurements and prediction are performed at low heights 
(10–40 m). Modern wind turbines operate at hub heights (80–120 m). For 

Figure 6. Performance at height 300 m (a) Measured and estimated WS at 300 m height and 1 hour 
ahead (b) R2 for measured and predicted WS at 300 m height and 1 hour ahead (c) Measured and 
estimated WS at 300 m height and 12 hour ahead (d) R2 for measured and predicted WS at 300 m 
height and 12 hour ahead.

Table 4. COMPARISON BETWEEN ANN AND GANN MODEL BASED ON ESTIMATED WIND SPEED AT 
6TH HOUR AHEAD OF TIME.

RMSE MAPE R2

ANN GANN ANN GANN ANN GANN
10 m 1.14 0.92 0.25 0.21 0.81 0.87
20 m 1.10 0.87 0.23 0.20 0.86 0.91
40 m 1.13 0.89 0.22 0.18 0.90 0.91
90 m 1.10 0.89 0.16 0.14 0.89 0.92
120 m 1.16 0.93 0.17 0.14 0.90 0.93
200 m 1.23 1.01 0.16 0.14 0.93 0.95
250 m 1.18 1.04 0.14 0.13 0.94 0.95
300 m 1.05 0.94 0.12 0.11 0.96 0.97
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Figure 7. Comparison of ANN and GANN at 6th future hour and different heights (a) Measured and 
estimated WS at 10 m height (b) R2 for measured and estimated WS at 10 m (c): Measured and 
estimated WS at 90 m height (d) R2 for measured and estimated WS at 90 m (e) Measured and 
estimated WS at 120 m height (f) R2 for measured and estimated WS at 120 m (g) Measured and 
estimated WS at 300 m height (h) R2 for measured and estimated WS at 300 m.

Figure 7. Continued.
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Figure 8. Predictability in relation to the future hours (a) Variation of MAPE with prediction hour 
(b) Variation of R2 with prediction hour.

Figure 9. Predictability with heights (a) Variation of MAPE with respect to height (a) Variation of 
MAPE with heights (b) Variation of R2 with heights.

Figure 10. Predictability in relation to the heights for the second data set.
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the first time, to the best knowledge of the authors, this paper assessed the 
predictability of wind speed relative to heights. LiDAR device was deployed to 
collect hourly averaged wind speed data and machine learning method was 
used for short term prediction. Artificial neural networks (ANN) were used to 
predict wind speeds at each of the 12 hours ahead of time based on previous 
48 hours. Predicted future values from 1st to the 6th hour did not deteriorate 
significantly (at height 120 m MAPE ranged between 0.16–0.17) compared to 
the 7th to the 12th future hours (MAPE is increased up to 0.28).

It was observed that the predictability of wind speed improves with increas
ing heights. The MAPE values improved from 0.25 at 10 m height to 0.17 at 
120 m and further reduced to 0.12 at 300 m for sixth hour future wind speed 
prediction. For 12th hour future predictions, these values decrease from 0.40 
to 0,28, and 0.25 corresponding to heights, 10, 120, 300 m, respectively. The 
coefficient of determination R2 for the 6th hour prediction is improved from 
0.81 to 0.90 and 0.96 corresponding to heights 10, 120, 300 m, respectively. 
The used method is compared with a hybrid genetic algorithm and neural 
network method namely GANN on the prediction of WS at different heights 
for the 6th future hour. Comparison showed that the GANN performed better 
than ANN in terms of all performance measures. The improved predictability 
of WS with heights is validated on another data set with other methods (ANN, 
GANN, SVMR, and AR) as well.
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