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aFaculty of Technical Sciences in Cacak, University of Kragujevac, Cacak, Serbia; bInstitute Mihajlo Pupin, 
University of Belgrade, Belgrade, Serbia

ABSTRACT
The electromechanical design of the HDD (Hard Disk Drive) 
renders it more susceptible to failures than other components 
of the computer system. The failure of HDD leads to permanent 
data loss, which is typically more expensive than HDD itself. The 
SMART (Self-Monitoring, Analysis and Reporting Technology) 
system warns the user if any HDD parameter has exceeded the 
predefined threshold value needed for safe HDD operation. 
Machine learning methods take advantage of dependence 
between multiple SMART parameters in order to make failure 
prediction more precise. In this paper, we present a failure 
prediction model based on the anomaly detection method 
involving an adjustable decision boundary. SMART parameters 
are ranked by the importance and the 13 most significant ones 
are used as the initial feature set in our model. In the following 
stage, we optimized the feature set by removing those that 
have no major contribution to the anomaly detection model, 
forming the final feature set comprising seven features only. The 
proposed anomaly detection model achieved 96.11% failure 
detection rate on average, with 0% false detection rate in ten 
random tests. The proposed model predicted more than 80% of 
failures 24 hours before their actual occurrence, which enables 
timely data backup.
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Introduction

HDDs have been primary technology for computer data storage for several 
decades. Newly emerging SSDs (Solid State Drives), based on semiconductor 
storage, surpass HDDs in terms of response time and throughput perfor-
mance. On the other hand, HDDs are dozen times cheaper per stored byte 
than SSDs (Appuswamy et al. 2017), and it is still the predominant data storage 
medium both in the enterprise and consumer market. The electromechanical 
design of the HDD renders it more susceptible to failures than other compo-
nents of the computer system, with an average annual failure rate of HDDs in 
the range from 0.3 to 3%. The HDD failure generally leads to permanent data 
loss and typically the cost of losing data exceeds that of HDD itself. Reliability 
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of data storage on HDD is significantly improved using RAID (Redundant 
Array of Independent Disks) technology which provides data retention in case 
one or more HDDs in RAID array had failed. RAID technology is commonly 
used in enterprise computer systems given its considerable cost and multiple- 
HDD requirement in forming a redundant array. Typical computer systems 
for consumer market utilize a single HDD. The prediction of HDD failure can 
be very useful in preventing data loss as it allows for data backup in case of 
imminent HDD failure warning.

HDD failure mechanisms can be classified as predictable and unpredictable 
failures (Schroeder and Gibson 2007). The former are caused by progressive 
degradation of drive performance throughout HDD operation life due to 
mechanical wear of drive components and degradation of storage surfaces. 
The degradation of HDD performance can be monitored using various para-
meters (e.g. counting errors in read/write operations, increased number of the 
damaged sectors, or excess vibrations and latency) applied for predicting the 
likelihood of failure occurrence. Unpredictable failures occur instantaneously 
without any previous indications in drive performance. They can be caused by 
external forces (mechanical shock due to improper handling, electrostatic 
discharge and influence of fire, water, chemicals or radiation) whereby their 
occurrence cannot be predicted. Other causes of unpredictable failures are 
hidden defects in HDD components which typically occur at an early “infant 
mortality” period (<1 year) and during the “wear out” period (>5 years).

SMART monitoring system monitors various parameters during HDD 
lifetime. SMART parameters store current information about temperature, 
operating hours, the number of on/off cycles, the number of damaged sectors 
and read/write errors, etc. The parameters values are compared with the 
predefined threshold values set by HDD manufacturer. If the value of 
a particular SMART parameter exceeds the predefined threshold, the user is 
notified about impending HDD failure, which allows them to back up data and 
prevent data loss by replacing the failing drive. These threshold values are 
chosen for the purpose of ensuring minimized occurrence of false alarms 
(predicting HDD failure when HDD is actually working properly) while 
maximizing positive failure detection (predicting actual HDD failures). In 
this line, manufactures set the threshold levels as high as possible to avoid 
false alarms so as to minimize the number of returned HDDs under the 
warranty period (Hughes et al. 2002). With such restrictions, threshold- 
based algorithms implemented in drives achieve very low failure detection 
rates, ranging from 3% to 10% (Murray, Hughes, and Kreutz-Delgado 2003).

More advanced failure detection methods exploit dependency between 
multiple SMART parameters so as to predict failures much earlier before 
values of these parameters exceed manufacturer-preset threshold values. 
Also, these methods are more resistant to false alarms. Derivation of such 
methods required detailed knowledge of the physical operation of HDD which 
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could be a challenging task. Machine learning methods enable the construc-
tion of failure prediction algorithms in which dependency between SMART 
parameters and failure is learned by the algorithm itself from the set of training 
data without implicit programming. These machine learning algorithms are 
trained in such a manner as to ensure that false predictions do not exceed 0.1% 
False Alarm Rate (FAR) while achieving high Failure Detection Rate (FDR).

One of the first machine learning algorithms for HDD failure prediction, 
based on Naïve Bayesian, achieved 30% FDR at 0.67% FAR (Hamerly and 
Elkan 2001). Further research based on distribution-free statistical rank-sum 
tests, presented in (Hughes et al. 2002) and (Murray, Hughes, and Kreutz- 
Delgado 2003), improved failure prediction to 32% at 0.2% FAR, and 43.1% at 
0.6% FAR, respectively. In (Murray, Hughes, and Kreutz-Delgado 2005), the 
authors applied several machine learning algorithms and achieved maximum 
50.6% FDR with 0% FAR using SVM (Support Vector Machine) algorithms. 
Failure prediction algorithm based on Hidden Markov Model (Zhao et al. 
2010) affected 52% FDR with 0% FAR.

Further research managed to considerably increase the rate of successful 
failure predictions, with the increased false alarm rate though, which is 
unacceptably high for practical use. Failure prediction methods using Rule- 
based approach (Agarwal et al. 2009) reached 66% FDR with 3% FAR. In (Tan 
and Gu 2010), the authors used Tree Augmented Naïve Bayesian to achieve 
80% FDR with 3% FAR, however the algorithm achieved only 20–30% FDR 
where 0% FAR was requested. Priority-based proactive prediction method 
(Qian et al. 2015) achieved prediction rate of 86.3% FDR with 0.52% FAR. In 
(Goldszmidt 2012), the authors employed Hidden Markov model and static 
threshold filter to reach 88.2% prediction rate and 2.56% false alarm rate. The 
algorithm based on artificial neural network model with selective parameters 
(Zhu et al. 2013) gave 94.62% FDR and 0.48% FAR. In (Pitakrat, Hoorn, and 
Grunske 2013), the authors made a comprehensive analysis of machine learn-
ing algorithms for proactive HDD failure detection. Nearest neighbor classifier 
produced the best results with 97.4% FDR at 2.3% FAR. In (Wang et al. 2013), 
the authors presented FSMD (Feature selection-based Mahalanobis distance) 
method based on Mahalanobis distance, with feature selection achieving 67% 
FDR with 0% FAR. The same group of authors in (Wang et al. 2014) proposed 
the TSP (Two Step Parametric) method based on Mahalanobis distance and 
sliding-window approach thus achieving 68% FDR, respectively while main-
taining 0% FAR. Authors from paper (Mahdisoltani, Stefanovici, and 
Schroeder 2017) were able to predict 90% to 95% of all errors with 10% 
FAR. When they limited FAR to 2% FDR dropped to 70–90% of the errors. 
Authors from paper (Xu et al. 2018) achieved from 30 to 40% FDR on 
BackBlaze datasets, while maintaining 0.1% FAR, with their Cloud Disk 
Error Forecasting algorithm based on regression trees. The best results so far 
were obtained by the GMFD (Gaussian Mixture based Fault Detection 
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method) based on Mixture of Gaussians and Nonparametric statistics 
(Queiroz et al. 2017) which achieved 92.21% FDR with 0% FAR.

In our paper, an HDD failure prediction model based on anomaly detection 
is presented, with the average 96.11% FDR with 0% FAR achieved, by which 
we outperformed methods presented by other researchers on the same data 
set. Also, we were able to minimize feature set to only seven dominant SMART 
parameters used for failure prediction. The reduced feature set resulted in 
considerably lower computational complexity of the proposed failure predic-
tion model and improved precision of failure detection. The proposed model 
outperforms the models used in (Queiroz et al. 2017), and (Wang et al. 2013) 
and (Wang et al. 2014) where 14 and 28 SMART parameters were used, 
respectively.

Theoretical Background

Values of SMART parameters are sampled at periodic intervals and stored as 
a dataset for the individual drive. We used these datasets to build our model 
which consists of following consecutive steps: data preparation and feature 
selection, data transformation, measurement, and anomaly detection.

Data Preparation and Feature Selection

HDD state is monitored using various numbers of SMART parameters, 
referred to as features. Among all monitored features, some contribute sig-
nificantly to the failure of HDD, while some other features have negligible or 
no contribution at all. Feature selection aims to find the subset of the most 
relevant features which are later to be used for failure prediction models. The 
main reason for feature selection is the need for simplified models that require 
less time for training, given their lower complexity, and which are also less 
prone to data overfitting. Depending on their mutual influence on HDD 
failure, features can be classified into relevant, redundant or irrelevant. 
Redundant features are strongly correlated to another relevant feature, so 
they can be removed from dataset without significant loss of information. 
Irrelevant features have marginal influence on HDD failure and they are 
removed from dataset to reduce computation complexity of HDD failure 
prediction.

There are several approaches in feature selection. One of them involves the 
use of Physics-of-failure methodology called FMMEA (Failure Mode, 
Mechanisms and Effect Analysis) (Wang, Miao, and Pecht 2011) which exam-
ines the relationship between physical characteristics, operating conditions, 
and interaction of used materials with applied loads and stresses in HDD. As 
most HDD failures are mechanical, caused by gradual degradation of drive 
performance, FMMEA identifies the most probable failure mechanism. Each 
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failure mechanism is further analyzed to find the most suitable monitoring 
parameters which can help in predicting of such failure. The detailed survey of 
FMMEA methodology for HDD failure prediction can be found in the paper 
(Schroeder and Gibson 2007). Such methodology typically requires clear 
insight into the design and construction of HDD, which is only available to 
manufacturers.

Search techniques are used for finding optimal subset of features, using 
training data, which contains datasets for healthy and failed HDD. These 
methods use a certain metric to score each subset. The most accurate evalua-
tion metrics are based on wrapper techniques where each subset is used to 
train the model, which is afterward tested for the number of error it produces. 
Recursive Feature Elimination (RFE) (Guyon et al. 2002.) is feature selection 
algorithm in which feature selection is performed iteratively, by removing only 
one feature at a time and repeating the process with remaining suboptimal set 
of features. In each step SVM classifier is trained with the current set of 
features, which are ranked based on their weights, and feature with the lowest 
weight is eliminated. The process is repeated until the last feature remains and 
they are ranked according to the order of elimination.

Data Transformation

Many machine learning methods prefer parametrically distributed datasets in 
order to make correct predictions. SMART parameters are in most cases non- 
parametrically distributed so they need to be transformed into appropriate 
form prior application of such machine learning methods. Data transforma-
tion is performed by applying the same mathematical operation on each data 
of original dataset in order to redistribute data to be more likely to some 
parametrically distributed form.

Box-Cox power transformation (Box and Cox 1964) transforms positive 
data, by raising it by power exponent λ, in order to make resulting data to be 
normally distributed. This method finds optimum value of power exponent λ, 
which minimizes standard deviation of transformed data, whereby the trans-
formed data has the highest likelihood to be normally distributed. 
Transformation of each data element, which needs to have positive values, is 
performed by the (1). 

y λð Þ ¼ f
yλ� 1

λ λ�0
lnλ λ ¼ 0

(1) 

In case of negative data values, such constant value λ2 is added to turn all data 
to positive values prior applying Box-Cox transformation to determine power 
exponent λ1. 
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y λð Þ ¼ f
yþλ2ð Þ

λ1 � 1
λ1

λ1�0 yi > � λ2
ln yþ λ2ð Þ λ1 ¼ 0 yi > � λ2

(2) 

Mahalanobis Distance

The HDD SMART dataset can be represented in multidimensional space as 
a set of data points labeled as healthy or failed, where its position is defined 
by values of its parameters. Data points originating from healthy drives will 
tend to be grouped around certain point defined as mean or center of mass, 
while data points from failed drives will be typically scattered further 
around this center of mass. Distance measure needs to be used in order to 
determine how far these failed data points are from the center of mass. 
Mahalanobis distance (MD) represents the distance between certain data 
point in multi-dimensional space from the point which represents the 
center of mass expressed in standard deviations. Thus, when compared to 
standard Euclidean distance, MD represents unitless distance measure, 
which takes into account scaling of parameters as well as correlations 
between them.

The position of center of mass �X is determined by the set of coordinates 
�X1; . . . ;Xj; . . . ; �Xn
� �

, obtained as the arithmetic mean of healthy data points 
for each attribute j = 1 . . . n. Also, the scattering of healthy data points around 
the center of mass is expressed by standard deviation Sj for every attribute j. 
Attribute values xij for data points for healthy and failed drives are scaled to 
normalized values zij in order to eliminate scaling effect. 

zij ¼
xij � �Xj

Sj
�Xj ¼

Xm

i¼1
xij Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼1 xij � �Xj
� �2

m � 1

s

(3) 

Mahalanobis distance MDi for every data point i, is calculated using normal-
ized data points zi ¼ zi1; zi2; . . . ; zin½ � and covariance matrix C. 

MDi ¼ D2
i ¼

1
n

zT
i C� 1zi (4) 

C ¼
1

m � 1ð Þ

Xi¼1

m
zT

i zi (5) 

Anomaly Detection

Anomalies represent rare observations with values which are considerably 
dissimilar from the rest of the normal data. Anomaly detection algorithms 
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based on the cross-validation statistical method uses cross validation subset to 
evaluate the performance of prediction algorithm in order to select optimal 
model parameter.

In the process of creation and evaluation of anomaly detection algorithm, 
the dataset is divided into three subsets: training subset, CV (Cross- 
Validation) subset and test subset. Training set and CV set are used during 
construction of anomaly detection algorithm, while test set is used to inde-
pendently evaluate the performance of anomaly detection algorithm because it 
shares no bias with other two subsets. Training subset contains only healthy 
data, while cross-validation and test subsets both contain healthy and failed 
data. Training subset is used to extract statistical features to create baseline 
model for anomaly detection. In case of non-normal distribution of training 
data, the Box-Cox transformation (Box and Cox 1964) or the Johnson trans-
formation (Chou et al. 1998) could be used to transform the data into a normal 
distribution. CV subset is used to evaluate the performance of anomaly 
detection algorithm with the different model parameter, called decision 
boundary ε. The model parameter value which achieves the best performance 
on CV subset is selected as the decision boundary. Common methods used for 
parameter model selection are: hold-out CV, k-fold CV and leave-one-out CV 
(Cheng and Pecht 2012). In hold-out CV, training and CV set represent two 
independent datasets avoiding overlapping between these two. This type of 
test does not use all data to evaluate the model and estimation of performance 
is dependent on how this dataset is split into two subsets. K-fold CV (Kohavi 
1995) improves estimation of error since it uses all label data in cross- 
validation step, by partitioning the healthy dataset into k near equal subsets. 
In each step, k-1 subsets are used as training data, while one subset is used for 
cross-validation to estimate the performance of the algorithm. The process is 
repeated k times until every subset is used as CV subset and mean error rate of 
k iterations is calculated. Leave-one-out CV uses only one data point for 
validation, while all other data points are used for training. The process is 
repeated for each data point and mean error rate is determined. This method 
has high accuracy but it is only suited for small dataset due to the increased 
computational load.

Performance evaluation is based on measuring certain evaluation metrics 
derived from the confusion matrix. Confusion matrix represents the summary 
of the results of testing the anomaly detection algorithm and contains two 
rows for representation of results of predicted class, and two columns which 
contain results from the actual class as shown in Figure 1. Matrix elements 
represent the comparison between results of predicted class and actual class.

Correctly predicted anomalies are marked as true positives, while correctly 
predicted healthy values are marked true negatives. Numbers of incorrectly 
predicted anomalies are marked false positives, while numbers of undetected 
anomalies are marked as false negatives. Based on these values more detailed 
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analysis of prediction algorithm can be extracted. Precision represents the 
ratio between correctly detected anomalies and the total number of predicted 
anomalies and is used to measure the accuracy of anomaly detection model. 
Precision will be affected by false anomaly detections, thus algorithms for 
HDD failure prediction is required to achieve 100% accuracy in order to avoid 
false alarms. Accuracy as sole performance metrics can be misleading because 
the model will tend to detect the small number of anomalies so as to prevent 
inaccurate detections and keep accuracy high. The recall represents efficiency 
of failure prediction algorithm and represents the ratio between the number of 
successfully detected anomalies and the total number of anomalies present in 
the dataset. Recall as sole performance metrics can be misleading because the 
model will tend to classify all events as anomalies in order to be able to detect 
all anomalies. F-score represents the hybrid metrics which is used to create the 
balance between precision and recall metrics. In case of HDD failure predic-
tion algorithms, the most appropriate metrics is achieving much higher recall 
while maintaining 100% accuracy.

Proposed Method

The detailed algorithm for our method proposed for HDD failure prediction 
is presented in Figure 2. Firstly, in data preparation step, SMART para-
meters which have constant values throughout the whole dataset are 
removed to reduce computational complexity. Furthermore, outlier 

Figure 1. Visualization of two-class confusion matrix.
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statistical tests are performed in order to eliminate abnormal readings from 
SMART parameters of healthy drives, which could significantly affect the 
accuracy of failure prediction. This is followed by feature selection algo-
rithm which ranks all features according to their importance. In our 
approach, we used Recursive feature elimination which iteratively removes 
one feature at a time with the least influence on failure prediction. As an 
evaluation model for the failure prediction, we use SVM with the linear 
kernel which is trained with the remaining set of features, assigning the 
weights to each one. The feature which has the least weight is eliminated 
and the process is repeated until only one, the most influential, feature 
remains. Linear kernel SVM is chosen over other types of kernels because 

Figure 2. Flowchart of the proposed method for failure prediction algorithm.
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experimental observation shows that data appear to be almost linearly 
separable.

After HDD dataset is preprocessed, it is split into three subsets: training set, 
cross-validation set and test set. The training set contains only SMART para-
meter from healthy drives. Data values from training set are used to determine 
referent value for each SMART parameter based on the healthy data. Since 
SMART data are typically non-parametrically distributed, training set is also 
used to determine the appropriate power exponent λ for each of the para-
meters in order to transform data values of every attribute to be normally 
distributed. Transformed training data is further used for determining the 
center of mass of healthy data, in order to measure Mahalanobis distance of all 
data points in the two other subsets. Cross-validation set contains both data 
points from healthy and failed drives and is used to determine the most 
appropriate decision boundary which will achieve 0% FAR and the maximum 
value of FDR. Decision boundary is selected as value for predefined range 
which achieves minimum FAR on cross-validation set. Selected decision 
boundary is used on the independent test set to determine precision of failure 
detection of the proposed anomaly detection model.

Results and Discussion

Machine learning-based HDD failure prediction models require a collection of 
datasets of SMART parameters collected from the large population of HDDs 
operating under similar conditions. Such datasets are typically collected by 
manufacturers during quality testing or in large data centers. In order to test 
the proposed method, we used dataset provided by Center for Magnetic 
Recording Research (CMRR) which is commonly used by researchers in this 
field to evaluate their failure prediction models. This dataset contains 
a relatively small number of samples (68411 data samples collected from 369 
drives), where each contains a set of 59 SMART parameters. Authors of CMRR 
dataset don’t provide details about drive vendor and operating conditions of 
failed drives. The monitored SMART parameters include temperature data, 
read and write error rates, head fly heights, servo and other parameters. HDD 
stores the last 300 SMART data samples in local memory collected in two-hour 
intervals, which are the last 600 hours of drive performance. Healthy drives 
contain information of the last 600 hours of operation as they passed reliability 
demonstration test which is performed by the manufacturer in controlled 
environmental conditions. Drives which failed in operation are returned to 
the manufacturer by users and some of them clocked less than 600 hours of 
operation. Dataset is collected from 191 failed drives which contain 17601 data 
samples and from 178 healthy drives which contain 51350 data samples.

SMART parameters included in dataset are as follows:
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● FlyHeight – proportional to distance between HDD head and rotating 
plate.

● Servo – parameter related to head actuator
● CSS (Contact Start/Stop) – number of power supply interruptions, which 

forced heads to be parked in HDD landing zone.
● PList (Primary list) – list of defective sectors mapped during factory 

production tests
● GList (Grown list) – list of defective sectors mapped during operation by 

disk microcode
● Temp – various temperature readings of HDD components
● ReadErrors – number of incorrectly read sectors which had CRC (Cyclic 

Redundancy Check) error Writes/Reads – total number of write/read 
operations

Some of the SMART parameters in dataset which had constant values 
throughout the whole dataset were removed, such as Servo4, ReadError13, 
ReadError14, ReadError15 and ReadError16. Also, we observed that many 
parameters had a large number of zero-counts, with just few garbage values 
in failed part of the dataset, and they were removed. After this step, we were 
able to further remove eight parameters with constant values (Temp2, 
Temp5, Temp6, FlyHeight14, FlyHeight15, FlyHeight16, ReadError20, 
WriteError) thus further reducing computational complexity of the pro-
posed model. Additionally, some of the abnormal values from remaining 
46 parameters were removed using statistical outlier test. The dataset with 
these 46 features was fed to SVM-RFE feature selection algorithm proposed 
in (Wang, Miao, and Pecht 2011). This algorithm ranks features of 
a classification problem which is trained using SVM classifier with a linear 
kernel. Iteratively, the feature with smallest ranking criterion obtained by 
decision hyperplane was removed the algorithm being repeated until the 
most influential feature remained. Results presented in Table 1. represent 46 
features which are ranked according to their importance when trained with 
linear SVM algorithm. The selected features presented are consistent with 
features selected by other researchers using various feature selection 
techniques.

The dataset, containing 191 failed and 178 healthy drives, is divided into 
three randomly created subsets: training set, CV set and test set. These sets are 
formed in the following manner:

● Training set contains data from 106 randomly chosen healthy drives 
(roughly 60% data samples from healthy drives) and no data from any 
failed drives.

● Cross Validation (CV) set contains data from 36 randomly chosen healthy 
drives (roughly 20% data samples from healthy drives) and data from 95 
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randomly chosen failed drives (roughly 50% data samples from failed 
drives).

● Test set includes data from 36 randomly chosen healthy drives (roughly 
20% data samples from healthy drives) and data from 96 randomly chosen 
failed drives (roughly 50% data samples from failed drives).

Many of the parameters in dataset are non-parametrically distributed 
(Schroeder and Gibson 2007), so we employed Box-Cox power transformation 
which finds the most appropriate power transformation coefficient lambda 
used to perform identical mathematical operation on each piece of original 
data, transforming data for normal distribution. The Box-Cox power trans-
formation supports positive data greater than zero, thus data of each attribute 
is added to one prior the transformation so as to avoid problems with zero 
values parameters.

After the Box-Cox power transformation, dataset is normalized using mean 
and standard deviation of healthy drives from the training set in order to 
eliminate the effect of scaling. As the dataset contains some of the parameters 
with constant values for healthy drives, the marginal amount of Gaussian noise 
is added to them in order to avoid singularity problems when calculating 
covariance matrix. Mahalanobis distance (MD) is the distance between 
a certain point in multivariate space and the center of mass point. Based on 
the training set, Mahalanobis distance is calculated for all data from dataset 
and each data sample is represented by the single value which represents MD 

Table 1. Features ranked by SVM RFE by their importance.
Feature rank Feature name Feature rank Feature name

1. GList1 24. FlyHeight5
2. GList3 25. CSS
3. Servo10 26. PList
4. ReadError18 27. Servo2
5. Servo9 28. Writes
6. FlyHeight1 29. ReadError3
7. FlyHeight2 30. ReadError2
8. Temp4 31. ReadError5
9. FlyHeight11 32. ReadError9
10. Servo5 33. FlyHeight7
11. FlyHeight10 34. FlyHeight4
12. ReadError19 35. Servo7
13. Servo6 36. Temp3
14. FlyHeight9 37. Servo3
15. FlyHeight6 38. ReadError1
16. ReadError4 39. ReadError7
17. Servo1 40. ReadError6
18. FlyHeight12 41. ReadError11
19. FlyHeight8 42. GList2
20. Temp1 43. ReadError12
21. FlyHeight13 44. Servo8
22. Reads 45. ReadError10
23. FlyHeight3 46. ReadError8
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from the center of mass point. Anomaly detection algorithm is trained using 
MD values from cross-validation set. The goal of the algorithm is to choose 
decision threshold ε such that we have maximum score of some criterion. In 
practice, the most acceptable criterion is that each healthy drive is labeled 
correctly, which prevents false alarms (0% FAR). Decision boundary ε is 
determined using the two-step approach. The first element from the logarith-
mic scale within the range [10−3 ÷ 1012], which achieves 0% FAR, is chosen as 
course value for decision boundary. Next, new linear scale, bounded by coarse 
decision boundary value and its previous element, is divided into 1000 ele-
ments, where the first one achieving 0% FAR is chosen as the final value for 
decision boundary ε. The selected decision boundary ε value is used to evaluate 
the performance of the proposed failure detection algorithm on the test set. In 
order to determine the number of features needed to achieve the best perfor-
mance of anomaly detection method, we iteratively added one additional 
feature from the SVM-RFE feature list then repeated the process of finding 
optimal decision boundary and finally tested the selected decision boundary 
on the test set. The broken red line in Figure 3 shows how FDR is affected by 
adding new features from the SVM-RFE feature list. As shown in the graph, 
maximum FDR result was achieved with 13 features, while further adding of 
the lower-ranked features to anomaly detection model gave almost constant 
results.

In order to eliminate the influence of dataset partitioning on the precision 
of failure prediction, results were obtained using ten experiments with ran-
domly formed sets. With these 13 features, our anomaly detection algorithm, 
achieved averagely 94.32% FDR, with 0% FAR on seven tests, as shown in the 
left half of Table 2. In three other tests, our model reached 94.11% FDR, 
however was able to achieve 1.1% FAR.

Figure 3. Failure detection rate in function of number of selected features.
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We observed that some features, highly ranked by SVM-RFE, made no 
contribution to the performance of anomaly detection method according to 
their expected rank. Those features were identified as: FlyHeight2, FlyHeight8, 
FlyHeight9, ReadError18, ReadError19 and Servo 9. When these features were 
added to the model, overall performance of anomaly detection algorithm 
stagnated or even decreased. In order to optimize anomaly detection method, 
these features were moved to the end of feature rank list as the ones with little 
relevance, as shown in Table 3.

Subsequent to the optimization of feature list ranked by SVM-RFE we 
repeated the tests by iteratively adding one additional feature from the opti-
mized SVM-RFE feature list, repeated the process of finding optimal decision 
boundary and tested the selected decision boundary on the test set. The results 
presented by solid blue line in Figure 3 show that maximum value of FDR is 

Table 2. Test results for regular and optimized SVM RFE ranked features.

Test No.

SVM RFE OPTIMIZED SVM RFE

FAR (%) FDR (%) FAR (%) FDR (%)

1 0 95.79 0 94.74
2 0 95.79 0 98.94
3 0 92.63 0 96.84
4 0 90.53 0 94.74
5 1.14 91.58 0 96.84
6 0 95.97 0 95.79
7 0 93.68 0 94.74
8 1.09 95.97 0 95.79
9 1.09 94.79 0 97.89
10 0 95.79 0 94.79
Average 0 94.52 0 96.11

Table 3. SVM-RFE feature rank list after optimization.
Feature rank Feature name Feature rank Feature name

1. GList1 24. ReadError2
2. GList3 25. ReadError5
3. Servo10 26. ReadError9
4. FlyHeight1 27. FlyHeight7
5. Temp4 28. FlyHeight4
6. FlyHeight11 29. Servo7
7. Servo5 30. Temp3
8. FlyHeight10 31. Servo3
9. Servo6 32. ReadError1
10. FlyHeight6 33. ReadError7
11. ReadError4 34. ReadError6
12. Servo1 35. ReadError11
13. FlyHeight12 36. GList2
14. Temp1 37. ReadError12
15. FlyHeight13 38. Servo8
16. Reads 39. ReadError10
17. FlyHeight3 40. ReadError8
18. FlyHeight5 41. FlyHeight2
19. CSS 42. ReadError19
20. PList 43. ReadError18
21. Servo2 44. Servo9
22. Writes 45. FlyHeight9
23. ReadError3 46. FlyHeight8
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achieved by only seven features. The used features ranked by their importance 
were as follows: GList 1, GList 3, Servo 10, FlyHeight1, Temp4, FlyHeight11 
and Servo5. The results show that the optimization of rank list reduced the 
number of the required features by half and still higher FDR was achieved. 
When seven features from the optimized rank list were used, our algorithm 
achieved 96.11% FDR with 0% FAR in all the ten tests, as presented in right 
half of Table 2.

Besides the accurate prediction of HDD failure, it is important to highlight 
that the prediction is made in advance, before the failure actually occurs, 
which allows for timely data backup. As soon as the value of drives 
Mahalanobis distance exceeds threshold alarm is triggered predicting failure, 
as shown in Figure 4. The results presented in Table 4 show that our model 
was able to predict 80.53% failures at least 24 hours prior the occurrence of 
actual HDD failure. Our results are comparable to the results presented by 
GMFD (Queiroz et al. 2017) and these two methods both outperform TSP 
(Wang et al. 2014) and FSMD (Wang et al. 2013) failure prediction methods. 
Our algorithm was able to detect failure averagely 140 hours prior the occur-
rence of actual failure.

Figure 4. Failure prediction for drive #10.

Table 4. Summary of time before failure for failed drives.

Time before failure

Percentage

OUR GMFD TSP FSMD

Non-detectable 3.89 7.79 31.58 32.98
≥ 0 96.11 92.21 68.42 67.02
≥ 12 h 86.53 86.39 50.00 60.21
≥ 24 h 80.53 81.88 46.05 52.66
≥ 36 h 74.95 76.55 43.42 45.12
≥ 48 h 67.89 73.19 32.89 37.58
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Conclusion

In this paper, we presented HDD failure prediction model which enables the 
user to take preventive actions in order to backup important data before 
failure actually occurs. Our model achieved averagely 96.11% failure detec-
tion rate, with 0% false alarms. The results of our tests showed better 
performance on identical CMRR dataset, in comparison with GMFD failure 
detections model which yielded 92.21% FDR (Queiroz et al. 2017), as well as 
TSP (Wang et al. 2014) and FSMD (Wang et al. 2013) models which achieved 
68.42% FDR and 67.02% FDR, respectively. Furthermore, our model 
required only seven features, which is the half of features required by 
GMFD model and only a quarter of features required by TSP and FSMD 
models. With the reduced number of features, our model was easier to 
implement given the significantly reduced computational complexity, com-
pared to other models.
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