

British Journal of Mathematics & Computer Science 13(1): 1-7, 2016, Article no.BJMCS.21641

ISSN: 2231-0851

SCIENCEDOMAIN international www.sciencedomain.org

Necessary and Sufficient Conditions for L¹ - convergence of Cosine Trigonometric Series

Nawneet Hooda^{1*}

¹Department of Mathematics, DCR University of Science and Technology, Murthal-131039, India.

Article Information

DOI: 10.9734/BJMCS/2016/21641 <u>Editor(s):</u> (1) Metin Basarir, Department of Mathematics, Sakarya University, Turkey. (1) Teodoro Lara, University of Los Andes, Venezuela. (2) Bohdan Podlevskyy, National Academy of Sciences of Ukraine, Ukraine. Complete Peer review History: <u>http://sciencedomain.org/review-history/12343</u>

Original Research Article

Received: 27 August 2015 Accepted: 17 October 2015 Published: 19 November 2015

Abstract

We obtain a necessary and sufficient condition for L^1 -convergence of a modified cosine sum and a theorem of Telyakovskii [1] concerning convergence behavior of cosine series with monotonic decreasing coefficients has been deduced as a corollary.

Keywords: L^{1} - convergence; modified cosine sum; class S.

2000 AMS mathematics subject classification: 42 A 20, 42 A 32.

1 Introduction

Consider the cosine series

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx$$
 (1.1)

Let $S_n(x)$ denote the partial sum of (1.1) and let $f(x) = \lim_{n \to \infty} S_n(x)$.

The problem of L^1 – convergence, via Fourier coefficients, consists of finding the properties of Fourier coefficients such that the necessary and sufficient condition for $||S_n(x) - f(x)|| = o(1), n \rightarrow \infty$, is given in the form $a_n \log n = o(1), n \rightarrow \infty$, where ||.|| denotes the L^1 -norm.

^{*}Corresponding author: E-mail: nawneet.hooda@yahoo.co.in;

The following definitions are related to this paper.

Convex sequence. [2,vol.II,p.202] A sequence $\{a_k\}$ is said to be convex if $\Delta^2 a_k \ge 0$ for every k where $\Delta^2 \mathbf{a}_k = \Delta \mathbf{a}_k - \Delta \mathbf{a}_{k+1}$ and $\Delta \mathbf{a}_k = \mathbf{a}_k - \mathbf{a}_{k+1}$.

 $\label{eq:Quasi-Convex sequence [2,vol.II,p.202]} \text{. A sequence } \{a_k\} \text{ is said to be quasi-convex if } \sum_{k=1}^\infty k \mid \Delta^2 a_k \mid < \infty.$

The class of all such sequences is an extension of the class of convex null sequences. The class of quasiconvex sequences is a subclass of BV class ($\sum_{k=1}^{\infty} |\Delta a_k| < \infty$), the class of all null sequences of bounded variation.

Teljakovskii [3] generalized the notion of quasi- convexity.

Let $\{a_k\}$ be a sequence satisfying

$$ak \to 0 \ as \ k \to \infty$$
; (1.2)

$$S1 = \sum_{k=0}^{\infty} |\Delta ak| < \infty; \qquad (1.3)$$

$$S2 = \sum_{m=2}^{\infty} \left| \sum_{k=1}^{[M/2]} \frac{\Delta a_{M-k} - \Delta a_{M+k}}{k} \right| < \infty.$$

$$(1.4)$$

It has been established [3] that a quasi-convex null sequence satisfies the conditions (1.2) - (1.4) and imply $\lim_{n\to\infty} S_n(x)$ exists where $S_n(x)$ is the partial sum of (1.1).

Concerning L^1 -convergence of the cosine series (1.1), the following theorem is known:

Theorem A [2]. If $a_k \downarrow 0$ and $\{a_k\}$ is convex or even quasi-convex, then for the convergence of the series (1.1) in the metric space L^1 , it is necessary and sufficient that $a_n \log n = o(1), n \rightarrow \infty$.

Teljakovskii [4] generalized Theorem A for the cosine series (1.1) with coefficients $\{a_k\}$ satisfying conditions (1.2) - (1.4) and established the following Theorem:

Theorem B [4]. Let the coefficients $\{a_k\}$ of the series (1.1) satisfy the conditions (1.2) – (1.4). If $\lim_{n\to\infty} a_n \log n = 0$, then the cosine series (1.1) converges in the L¹-metric space.

Teljakovskii [3] has also shown that under the conditions (1.2) - (1.4), the series (1.1) is a Fourier series and

$$\int_{0}^{\pi} \left| \frac{\mathbf{a}_{0}}{2} + \sum_{k=1}^{\infty} \mathbf{a}_{k} \operatorname{coskx} \right| dx \leq C(S_{1}+S_{2})$$

where C is a positive constant.

Sidon generalized the concept of quasi-convexity as follows:

The class S [5]. A null sequence $\{a_k\}$ belongs to the class S if there exists a sequence $\{A_k\}$ such that (i) $A_k \downarrow 0$, $k \rightarrow \infty$, (ii) $\sum_{k=0}^{\infty} A_k < \infty$, and (iii) $|\Delta a_k| \le A_k$ for all k.

The class S is the extension of the class of quasi-convex sequences. Since a quasi-convex null sequence satisfies conditions of the class S, if we choose $A_n = \sum_{m=n}^{\infty} |\Delta^2 a_m|$.

Teljakovskii generalized Theorem A by establishing the following theorem:

Theorem C [1]. Let $\{a_k\}$ belong to the class S. Then the cosine series (1.1) is the Fourier series of its sum f and $||S_n(x) - f(x)|| = o(1), n \rightarrow \infty$ if and only if $a_n \log n = o(1), n \rightarrow \infty$.

Teljakovskii, thus showed that the class S is also a class of L^1 -convergence which in turn led to numerous, more general results.

Rees and Stanojevic [6,7] introduced a new type of cosine sum

$$h_{n}(x = \frac{1}{2} \sum_{k=0}^{\infty} \Delta a_{k} + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_{j} \cos kx$$

$$(1.5)$$

and obtained a necessary and sufficient for its integrability.

Regarding the L^1 - convergence of (1.5) to a cosine trigonometric series belonging to the class S, Ram proved the following result:

Theorem D. [8]. If $\{a_k\}$ belongs to the class S, then

$$\| f(x) - h_n(x) \| = o(1), \quad n \longrightarrow \infty.$$

Kumari and Ram [9] introduced a new modified cosine sum

$$f_n(x) = \frac{a_0}{2} + \sum_{k=1}^n \sum_{j=k}^n \Delta \left(\frac{a_j}{j}\right) k \cos kx$$
(1.6)

and proved the result:

Theorem E. Let $\{a_k\}$ belong to the class S.

If $\lim_{n\to\infty} |a_{n+1}| \log n = 0$, then $||f(x) - f_n(x)|| = o(1), n \rightarrow \infty$.

Hooda et al. [10] introduced new modified cosine sum

$$g_{n}(\mathbf{x}) = \left(\frac{1}{2}\right) \left[a_{1} + \sum_{k=0}^{n} \Delta^{2} a_{k}\right] + \sum_{k=1}^{n} \left[a_{n+1} + \sum_{j=k}^{n} \Delta^{2} a_{j}\right] \cos k\mathbf{x}, \qquad (1.7)$$

and studied the necessary and sufficient conditions for the L¹-convergence and integrability of the limit of (1.7) under the conditions (1.2) - (1.4).

In recent years, significant results have been developed by various authors [11-16] by imposing different conditions on the coefficients a_k of trigonometric series (1.1). The aim of this paper is to study the L^1 -convergence of (1.7) under class S on the coefficients a_k and deduce Theorem C as a corollary of our result.

2 Lemma

The following lemma is required for the proof of our result:

Lemma 1. [17]. If $|c_k| \leq 1$, then

$$\int_{0}^{\pi} \left| \sum_{k=0}^{n} c_{k} D_{k}(\mathbf{X}) \right| d\mathbf{x} \leq C (n+1),$$

where C is a positive constant and $D_n(x) = (1/2) + \cos x + ... + \cos nx$ represents Dirichlet's kernel.

3 Results

Theorem 1. Let $\{a_k\}$ belong to the class S, then

 $\| f(x) - g_n(x) \| = o(1), n \rightarrow \infty$ if and only if $a_n \log n = o(1), n \rightarrow \infty$.

Corollary 1. Let $\{a_k\}$ belong to the class S, then

 $||S_n(x) - f(x)|| = o(1), \quad n \to \infty$ if and only if $a_n \log n = o(1), n \to \infty$. This is nothing but theorem C.

Proof of Theorem 1. We have

$$\begin{split} g_{n}(x) &= \left(\frac{1}{2}\right) \left[a_{1} + \sum_{k=0}^{n} \Delta^{2} a_{k}\right] + \sum_{k=1}^{n} \left[a_{n+1} + \sum_{j=k}^{n} \Delta^{2} a_{j}\right] \cos kx \\ &= (1/2)[a_{0} - a_{n+1} + a_{n+2}] + \sum_{k=1}^{n} [a_{k} - a_{n+1} + a_{n+2}] \cos kx \\ &= (a_{0}/2) - (1/2)\Delta a_{n+1} + \sum_{k=1}^{n} a_{k} \cos kx - \Delta a_{n+1} \sum_{k=1}^{n} \cos kx \\ &= (a_{0}/2) + \sum_{k=1}^{n} a_{k} \cos kx - \Delta a_{n+1} \sum_{K=1}^{n} \left[\cos ks + \frac{1}{2}\right] \\ &= S_{n}(x) - \Delta a_{n+1} D_{n}(x) \,. \end{split}$$

Using Abel's transformation, we get

$$g_{n}(x) = \sum_{k=0}^{n-1} \Delta a_{k} D_{k}(x) + a_{n} D_{n}(x) - \Delta a_{n+1} D_{n}(x)$$

$$= \sum_{k=0}^{n} \Delta a_{k} D_{k}(x) + a_{n+2} D_{n}(x).$$
(3.1)

4

Now,

$$\mathbf{f}(\mathbf{x}) - \mathbf{g}_{\mathbf{n}}(\mathbf{x}) = \sum_{k=n+1}^{\infty} \Delta a_k D_k(\mathbf{x}) - \mathbf{a}_{n+2} \mathbf{D}_{\mathbf{n}}(\mathbf{x}).$$

Abel transformation with lemma1 yield,

$$\begin{split} &\int_{0}^{\pi} \left| f(x) - g_{n}(x) \right| \mathrm{d}x \\ &\leq \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x) \right| \mathrm{d}x + \int_{0}^{\pi} \left| a_{n+2} D_{n}(x) \right| \mathrm{d}x \\ &= \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x) \right| \mathrm{d}x + \int_{0}^{\pi} \left| a_{n+2} D_{n}(x) \right| \mathrm{d}x \\ &= \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta A_{k} \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x) \right| \mathrm{d}x + \int_{0}^{\pi} \left| a_{n+2} D_{n}(x) \right| \mathrm{d}x \\ &\leq C \sum_{k=n+1}^{\infty} (k+1) \Delta A_{k} + \int_{0}^{\pi} \left| a_{n+2} D_{n}(x) \right| \mathrm{d}x \; . \end{split}$$

Now, $\int_{0}^{\pi} |a_{n+2}D_n(x)|$ behaves like $a_n \log n$ and under the assumed hypothesis $a_n \log n = o(1), n \rightarrow \infty$ as well as $\sum_{k=n+1}^{\infty} (k+1)\Delta A_k$ converges, the right hand side tends to zero as $n \rightarrow \infty$ and this gives

$$\lim_{n\to\infty}\int_0^{\pi} |f(x) - g_n(x)| \, \mathrm{dx}=0.$$

On the other hand,

$$a_{n+2}D_n(x) = \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) - [f(x) + g_n(x)],$$

and so

$$\int_{0}^{\pi} \left| a_{n+2} D_n(x) \right| \mathrm{dx} \leq \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) \right| \mathrm{dx} + \int_{0}^{\pi} \left| f(x) - g_n(x) \right| \mathrm{dx}.$$

Using the hypothesis of the theorem along with above estimates, the right hand side tends to zero as $n \rightarrow \infty$.

This completes the proof of our theorem.

Proof of Corollary 1. We have

$$\int_{0}^{\pi} |f(x) - S_{n}(x)| dx = \int_{0}^{\pi} |f(x) - g_{n}(x) + g_{n}(x) - S_{n}(x)| dx$$

$$\leq \int_{0}^{\pi} |f(x) - g_{n}(x)| dx + \int_{0}^{\pi} |g_{n}(x) - S_{n}(x)| dx$$

$$\leq \int_{0}^{\pi} |f(x) - f_{n}(x)| dx + \int_{0}^{\pi} |\Delta a_{n+1} D_{n}(x)| dx$$

whereas

$$\int_{0}^{\pi} |\Delta a_{n+1} D_{n}(x)| dx \leq \int_{0}^{\pi} |f(x) - f_{n}(x)| dx + \int_{0}^{\pi} |f(x) - S_{n}(x)| dx .$$

Since $\int_{0}^{n} |D_n(x)| dx$ behave like log n for large values of n and by the hypothesis of our result the corollary follows.

ionows.

4 Conclusion

In this paper, a new approach has been developed to obtain a necessary and sufficient condition for L^1 -convergence of trigonometric series (1.1). Our results can be generalized to obtain more interesting results.

Acknowledgements

I acknowledge the financial support by University Grant Commission, New Delhi (India) under Major Research Project vide letter F. No. 41-804/2012 (SR). I also express my gratitude to the referees for their valuable suggestions incorporated in this paper to make it more accepting.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Teljakovskii SA. Concerning a sufficient condition for Sidon for the integrability of trigonometrical series. Mat. Zametki. 1973;14:317-328.
- [2] Bari NK. A treatise on trigonometric series. London; Pregamon Press. 1964;2.

- [3] Teljakovskii SA. Conditions for integrability of trigonometric series and their applications to the study linear summation methods for Fourier series. Izv. Akad. Nauk. SSSR. Ser. Mat. 1964;28: 1209-36.
- [4] Teljakovskii SA. On a problem concerning convergence of Fourier series in metric L. Mat. Zametki. 1967;1:91-98.
- [5] Sidon S. Hinreichende be dingeingen fur den Fourier-character einer trigonometris chen Reihe. J. London Math. Soc. 1939;14:158-160.
- [6] Rees CS, Stanojevic CV. Necessary and sufficient conditions for integrability of certain cosine sums. J. Math. Anal. Appl. 1973;43:579-586.
- [7] Garrett JW, Stanojevic CV. On L¹-convergence of certain cosine sums. Proc. Amer. Math. Soc. 1976;54:101-105.
- [8] Ram B. Convergence of certain cosine sums in the metric space L. Proc. Amer. Math. Soc. 1977;66: 258-260.
- Kumari S, Ram B. L¹-convergence of a modified cosine sum. Indian J. pure appl. Math. 1988;19: 1101-1104.
- [10] Hooda N, Bhatia SS, Ram B. On L¹-convergence of a modified cosine sums. Soochow Journal of Mathematics. 2002;28:305-10.
- [11] Le RJ, Zhou SP. A new condition for the uniform convergence of certain trigonometric series. Acta Math. Hungar. 2005;108:161-169.
- [12] Tikhonov S. Trigonometric series with general monotone coefficients. J. Math. Anal. Appl. 2007;326: 721-735.
- [13] Yu DS, Le RJ, Zhou SP. Remarks on convergence of trigonometric series with special varying coefficients. J. Math. Anal. Appl. 2007;333:1128-1137.
- [14] Tomovski Z. Generalization of some theorems of L¹- convergence of certain trigonometric series. Tamkang J. Math. Spring. 2008;39: 63-74.
- [15] Szal B. On L-convergence of trigonometric series. J. Math. Anal. Appl. 2011;373:449-463.
- [16] Hooda N. L¹-Convergence of r-th differential of trigonometric series. British Journal of Mathematics & Computer Science. 2015;10(6):1-6.
- [17] Fomin GA. On linear methods for summing Fourier series. Mat. Sb. 1964;66(107):114-152.

© 2016 Hooda; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/12343