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Abstract

There is a paucity of research on one of the key issue$ spibbidetection: the imbalanced training set
learning problem. This paper performs experiments to shovinfence of the imbalanced learning
problem (ILP) on oil spill detection and devises a novel fraank to tackle this problem. Experimental
results show that an imbalanced training set degenerate rioenpence of oil spill detection, and our
proposed framework achieves a better performance based orsbrmea
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ABBREVIATIONS

P: Positives; N: Negatives; NN: Neural Network; NB: NaBayes; SOM: Self-Organizing Map; MTD:
Mega-Trend Diffusion; ILP: Imbalanced Learning Proble®AR: Synthetic Aperture Radar; SMOTE:
Synthetic Minority Oversampling Technique; MWMOTE: MayoriWeighted Minority Oversampling
Technique; MD: Mahalanobis Distance; CMD: Cost-sensitivah®anobis Distance; TSd: Standard
Deviation of Target; BSd: Standard deviation of the background®®:TRue Positive Rate; TNR: True
Negative Rate.

1 Introduction

Pollution resulting from oil spills in open sea and coastalers is a major threat to ocean ecosystems.
Detection and continuous monitoring of oil spills are imaartcomponents of law enforcement efforts to
minimize the impact that oil polluting events have on thesgstem. Previous studies have shown that
synthetic aperture radar (SAR) is effective in the deteand classification of oil spills. Oil spills appess
dark spots in SAR images. However, similar dark spot®Kialikes”), resulting in misidentification, may
arise from a range of unrelated meteorological and ocearognalpenomena. How to distinguish oil spills
from “look-alikes” is definitely a hot topic.

Kubat and Brekke identified four key issues during theiraiopment of a machine learning component for
an oil spill detection system [1,2]. One of the key isssdhe imbalanced training set in which there are a
great many more negative examples (“look-alikes”) thasitiye examples (oil spills). Oil spill detection is
an application where the classifier detects a rare,rbportant, event: “look-alikes” appear much more
frequently. Imbalanced training set learning, namely desgghimbalanced learning problem (ILP), moves
the decision threshold, or classification boundary, towlaednajority class, thereby causing a decrease in
the generalization ability of machine learning algorithm® i& one of the key issues in oil spill detection;
however, to our knowledge, how it affects detection performandehow to tackle it have not been reported
in the literature.

This paper focuses on ILP and compares it with existing rdsttimt deal with this problem using an oil

spill training set. The contributions are two-folds) {d confirm that detection performance is affected by an
imbalanced oil spill training data set and (2) to devisewel, simple classification method. To descript
clearly, we use an oil spill as a positive class, aoniy class and a “look-alike” as a negative class, a
majority class.

2 Methodology

2.1 State of art

To deal with ILP, many researchers have studied ihipdiom three perspectives: sampling, cost-sensitive
methods, and algorithm-based methods [3].

2.1.1 Sampling

Sampling methods include many different forms of genagatimd re-sampling. The main concept of the re-
sampling methods is to balance class distribution by uratapling the majority class examples, or over-
sampling the minority class examples, or both. Under-sampémoves data from the majority of the class
examples of the original data set and uses only some okémepées as the training set. Under-sampling,
although readily providing a simple method for adjusting the balaficgaining set, may lead to an

important loss of information. Kim proposed an under-samplinthodebased on a Self-Organizing Map
(SOM), which is used in this work for comparison [4]. Ovempling replicates selected examples of the
minority class based on some strategies. Synthetic ityinoversampling technique (SMOTE) [5] and
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Mega-Trend Diffusion (MTD) function [6] are intelligent oveampling methods that generate new
examples for the minority class. But they ignored the médion of majority. After then, majority weighted
minority oversampling technigue (MWMOTE) [7] was propostd generate synthetic samples by
combining minority and majority information. They createvnexamples artificially by interpolating the
pre-existing minority examples. However, samplingdolsmethod changes the true distribution of samples.

2.1.2 Cost-sensitive methods

Cost-sensitive methods are based on the concept of anwisix, which is considered a numerical
representation of the penalty for misclassification [8]this work, the cost of misclassifying an oil spil a
“look-alike” is far greater than that of misclassifyingl@aok-alike” as an oil spill. Consequently, we attach a
higher penalty to misclassifying an oil spill. This tecluggin order to increase the probability of extracting
an oil spill correctly, moves the decision thresholdglessifier boundary, toward the majority class. Some
other methods introduce misclassification costs into #ight updating strategy used in AdaBoost [8].

2.1.3 Algorithm-based methods

The methods, at the algorithm level, include the followiadjusting the classification regularization [9];
changing the kernel function or corresponding weights [10]; derisig only one class of information by
ignoring the other classes of information [11,12]; hybriahfework with re-sampling and cost-sensitive
methods; etc. Zong et al. proposed a weighted extremeingamachine method for imbalance learning
[13].

2.2 Cost-sensitive Mahalanobis distance classifidan

Mahalanobis distance (MD), introduced by P. C. Mahalanobi®86, is a measure of the distance between
a point, P, and a distribution, D. It is a multi-dimemsil generalization of the idea of measuring the number
of standard deviations P is from the mean of D [14]. Basedgivea distribution, D, the MD of each point

is computed as the input to the procedure that follows clssifier performs based on the MD of each data
point. Both Fiscella and Zhou used this classification inspill detection, while the difference of our
method in this work is at extracting normal group and defittieghreshold [15,16].

Cost-sensitive Mahalanobis distance (CMD) classificatiomkines a cost-sensitive method, which takes
into account a different penalty for misclassifying diéiet classes. The additional process defines a
threshold that is suitable as a classifier. The framkwgointroduced in detail in the following sections.

2.2.1 Extracting normal group

Based on a training data set that includes oil spills“buk-alike” examples, we compute the Euclidean
distance between any two examples. We take the five (or thifeeshold) nearest neighbor examples as the
neighborhood for each “look-alike” example. If there is“lomk-alike” example in the neighborhood, we
consider the corresponding “look-alike” example as noisyns€quently, the noisy “look-alike” examples
are removed, and the remaining “look-alike” examples &entas a normal group. Note that how to define
the neighborhood is based on the application in different cdses, it is defined as five.

This technique has a greater probability to separate apibifrom a “look-alike” and defines a distribution
that is more representative of “look-alike” examplesisMalata affects the distribution; thus, it must be
removed from the normal group.

2.2.2 Computing Mahalanobis distance

Here, we take “look-alikes” as a normal group, which arevddrirom a distribution space; however, oil
spills are abnormal examples, which are far removed frenmérmal group.
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Assume thatX(OR™", where m and n denote the dimension and number of feaespsctively, is an
observation set that is derived from the normal grqﬂg.Rmis the mean vector and8IR™ "is the
covariance matrix of X. The MD of a poiryt,D Rm, from the normal group is represented as follows:

D(y,X) =(y-#)'S™(y- p) (1)

Based on this representation, all data (including oil spilld “look-alikes”) are changed into another
measurement scale. Fig. 1 shows the results derived ftdal.&'he map of an oil spill (red ‘+’ in Fig. 1) is
far removed from that of a “look-alike” group (blue ‘0’ in Fifj.
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Fig. 1. Mahalanobis distance of examples including oil spénd “look-alike” based on extracted
normal group

2.2.3 Defining decision threshold

We classify test data, based on its MD, by comparingl#tte to a given threshold. Here, we introduce cost-
sensitivity into defining the threshold. The cost of rassifying an example is defined based on its
significance. There are many cost versions in the liteza We define the cost of a class example as one
divided by the number of class examples, which showshleaital significance of any given class is equal
to one unit. Then, we search the cost from the mean MDook-alikes” to the mean MD of oil spill
training data. The minimum cost corresponds to the thigske want to find, i.e. the best boundary to
segment the two classes.

3 Experiments

3.1 Data set

The dataset used in this study is derived from RADARSAScanSAR narrow beam images with a swath
of 300 km and a spatial resolution of 50 m, and covers vasti®aaid Atlantic coastal areas [17]. The
dataset used comprises fourteen features of 412 oil spillSl@vidalikes”. There are thirty oil spills and
382 “look-alikes.” Fig. 2 shows examples of oil spill and “lealke”. By visually discerning the gray tone
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difference between the dark-spots and the background, weedted dark-spot boundaries; therefore, we
need not introduce dark-spot detection.

(@) (b)

Fig. 2. The dark spots are the examples of (a) “look-&é” (acquired on Sep. 17, 2013, located at
50°43 N, 53°28 W), and (b) oil spill (acquired on Jul. 23, 2009, locatedt &2°50 N, 56°38 W).

Given the dark-spots in pixel-format, features must be ebeitiaas input for the classifiers. For each of the
dark spots, the following features, proposed in this papercomputed:

3.1.1 Physical and textural features

(1) Target area A, (2) Target perimeter P, (3) Complexieasure, C=P2/A, and (4) Spreading measure S,
i.e. the ratio between target width and length.

3.1.2 Geometric features

(1) standard deviation of target (TSd), (2) Mean intenditthe background area (BM), and (3) Standard
deviation of the background (BSd).

3.1.3 Contrast with background

(1) Power to mean ratio contrast (Tpm/Bpm) where Bpm=BBd/Tpm=TSd/TM and TM represent the
mean intensity of the target, (2) ConRaSd =Sd/BSd, (3) Catdfmed as the ratio between the TM and the
mean intensity value of a window centered at the regiorC¢Max, defined as the difference between the
BM and the lowest value inside the target, (5) ConSm=(Nti&1)Gb) where Nt is the number of target
pixels, Gt is the sum of the gradient values of tapgetls, Nb is the number of background window pixels,
Gb is the sum of the background window gradient values, (6) ™Mari gradient value of the dark-spot
border area, GMax. The gradients are computed by the 8pbsitor, (7) Standard deviation of the border
gradient values, GSd. More details about the data and feafudlask-spot refer to Xu et al. [17].
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3.2 Evaluation metric

To evaluate classifiers on the imbalanced data sets, wa trse positive rate (TPR), a true negative rate
(TNR), and F metrics. Table 1 shows the corresponding confasérix, where Positive denotes oil spill
and Negative denotes “look-alike”. TPR, TNR and F metriciydd from the version in Sokolova et al.)
[18] are defined as follows:

inx TP
TPR= TP TNR= TN ng Pre_c!smrx Recall ™ TP+FP  TP+FN @
TP+FP TN+FN Precision+ Recall mw ., TP

TP+FP TP+FN
where Precision, Recall are two popular evaluation meaiw$, TP, TN, FP, FN are shown in Table 1.

Table 1. Confusion matrix for performance evaluation

P (oil spills = Positives ) N (look-alikes = Negatives)
TP (True Positives) FN (False Negatives)
FP (False Positives) TN (True Negatives)

Intuitively, TPR and TNR are measure of exactness ¢tuadly labeled correctly. The F measure metric
combines exactness and completeness as a measuresificelisn effectiveness. We use the TPR and TNR
metrics to illustrate intuitively each method in dealinghwétn imbalanced training set. We use the F
measure to evaluate the performance of each classificaethod.

3.3 Experiments results and discussion

Our experiments include the following three parts. In thst fiwo parts, we carry out the following
classifications: (1) k-Nearest Neighbor (10-NN); (2tid®n tree (C4.5); (3) Naive Bayes (NB); (4) Neural
Network (NN) with the code in Matlab7.14 where parameteesset optimally; (5) SVM with the library,
Libsvm, written by Chih-Chung Chang and Chih-Jen Lin; (6aBoost introduced in Pang et al. [9]. We
employ a three-fold cross-validation technique for perforceaestimation. In each trial, we divide both the
oil spill dataset and the “look-alike” dataset into three stshsf equal size, select two subsets of oil spill and
two subsets of “look-alike” as training set and the remaiadeesting set.

3.3.1 First part, combining re-sampling methods into @ssifier

The first part is to carry out an under-sampling method taral over-sampling methods based on the
following six classifications that are the population in hae learning: k-NN, SVM, NB, NN, C4.5 and
AdaBoost methods. We introduce three sampling methodslagdothat is SOM, MTD and MWMOTE.

SOM is an unsupervised algorithm. First, it clusters thgiral majority class examples. Then, to remove
the examples which close to the centroid of each clustgiviey probability. Consequently, the remainder
majority class examples will be taken as the most septative examples and as the input to classifier. This
method reduces the number of majority class examplesjtlman’'t change the distribution of boundary
examples in majority class. We use it to extract, fromttaming set, the samples that best represent the
majority of the class samples.

Li et al. [19] proposed the MTD function to deal with timadl data set problem for scheduling strategies in
early flexible manufacturing systems. The main purpose @MmD function is to reduce the number of
data in the majority class and generate synthetic exanfpdbm the minority class to solve the ILP. The
MTD function first extracts only the part of the majorityamples that is most representative of its category.
Then, the MTD function generates synthetic examples baseal lmear combination randomly selected
from among the minority class examples. Consequengyntimber of examples between the majority and
minority classes is transferred to a more balancesl.le
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MWMOTE first identifies the hard-to-learn informativeinority class examples and assigns them weights
according to their Euclidean distance from the nearegbrityaclass samples. Then, using a clustering

approach, it generates synthetic samples from the welighftermative minority class examples. In such a

way, all the generated examples lie inside some mindéasscluster.

We carry out the classifiers aforementioned and Table @sstwe results. Numbers 1-6 in Table 2 show the
results of six classifiers on the observed origingihing data. The TPR values are the same for all six, b
the TNR values are different. For the F measure, Qdd>2AalaBoost classifications exhibit the best results.
SVM shows a somewhat poorer performance. Numbers 7-24 slkoredblts based on the three sampling
methods. For SOM-based under-sampling, the performance bfadd. AdaBoost are invariant with that
based on the original training data. Due to a reducddrityaclass, the other four classifiers show worse
performance; especially for k-NN, performance dediseverely. Therefore, this under-sampling method
does not affect the C4.5 and AdaBoost classifiers, andiitsgitable for the other four classifiers.

Table 2. Performance of classification

No Methods TPR TNR F No Methods TPR TNR F

1 KNN 0.77 0.82 0.43 18 AdaBoost+ MTD 0.87 0.46 0.30
2 SVM 0.77 094 0.62 19 KNN+ MWMOTE 0.77 0.81 043
3 NB 0.77 0.7¢ 041 20 SVM+ MWMOTE 0.77 0.9Z2 0.5¢

4 NN 0.77 080 0.42 21 NB+ MWMOTE 0.77 0.74 0.38
5 C45 0.77 095 0.64 22 NN+ MWMOTE 0.77 0.77 0.40
6 AdaBoost 0.77 095 0.64 23 C4.5+MWMOTE 0.77 093 0.61
7 KNN+ SOM 040 0.66 0.18 24 AdaBoost+ MWMOTE 0.77 0.9%64

8 SVM+ SOV 0.7z 0.7z 0.3t 25 KNN + cos-sensitive 0.8 0.8C 0.44

9 NB+SOM 0.77 0.79 0.41 26 SVM + cost-sensitive 0.87 0.0b1

10 NN + SOV 0.77 0.7 0.37 27 NB + cos-sensitive 0.8 0.7¢ 0.4z

11 C4.5+ SOM 0.77 095 0.64 28 NN + cost-sensitive 0.83 0.783 0
12 AdaBoost + SOM 0.77 0.95 0.64 29 C4.5 + cost-sensitive 08B2 0.61

13 KNN + MTD 0.9C 0.47 0.3z 30 AdaBoost +cos-sensitive 0.87 0.9z 0.61

14 SVM+ MTD 0.97 0.19 0.28 31 Oneclass SVM(negative) 00.40.95 0.40

15 NB + MTD 0.9C 0.4¢ 0.3t 32 Oneclass SVM(positiv 0.97 0.1¢ 0.2¢

16 NN+ MTD 093 041 0.32 33 Extreme machine learning 0.7r75 0.38

17 C4.5+ MTD 0.87 0.46 0.30 34 Cost-sensitive MD 0.97 0.95k70

For MTD-based over-sampling, as expected, the TPR of ladlsifiers increase; however, their TNRs
decrease dramatically. Consequently, the F measurdesé classifiers decrease in different degrees. By
removing some majority examples and generating some signthe@mples based on minority examples,
this over-sampling method makes the decision threshold mawsrdca majority; thus, this over-sampling
method increases the TPR, while adding some noisy date tmthing set.

WMWOTE tackles this problem, and generates synthetimpbas based on only the minority examples that
pre-removed noisy data. However, the TPRs of WMWOTEalsssifiers are invariant, and their TNRs
decrease. The degree of the decrease in their TNBssishan that of the MTD-based classifiers.

These experimental results show that imbalanced oil spilhileg is affected, more or less. To increase the
probability of correctly classifying an oil spill, re-salimg methods move the decision threshold toward a
majority class. But, at the same time, the procedeczeases the probability of classifying “look-aliked$.”
re-sampling processing reduces the total cost of hagsification, the processing is feasible.

3.3.2 Second part, combining cost-sensitive into classifi

Secondly, to show the influence of cost-sensitive pracgs®r ILP on an oil spill training set, these
classifiers are implemented with a cost-sensitive otkettWe add a cost matrix to the classifier’s initial
input. The same as previously done in Section 3, the cbsts oil spill and a “look-alike” are set at one
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divided by the number of oil spill examples and one dividedhsy number of “look-alike” examples,
respectively. In other words, we assume that the tatpbitance of one class is equal to that of another. It
seems reasonable that, the fewer the number of exampke<lass, the greater the importance of each
example.

For the cost-sensitive classifiers, experimental reshlbsv the similar case in MTD-Based methods that the
increase of TPR is at the expense of its TNR. Also, timeBsures of these classifiers varied in different
degrees. This case illustrates that cost-sensitiviigt be taken into account in imbalanced oil spill learning.
Numbers 25-30 in Table 2 show the best performancehforcost of an oil spill, in the range 1 to 12.7,
which maximum upper bound is an imbalanced ratio equal to theetuof “look-alike” examples divided
by the number of oil spill examples.

3.3.3 Third part, other algorithms for ILP

Thirdly, the following other algorithms are carried out foP: one-class SVM, extreme machine learning,
and our proposed framework. The significance of performdifterences among classifiers is statistically
tested. One-class SVM takes only one class of infoomdtil spill or “look-alike”) as classifier input, while
ignoring other classes of information. We performed thassifier with two strategies that use as input oil
spill and “look-alike,” respectively. The results shown in Nems 31-32 in Table 2, demonstrate that the
correct ratio of the class that is taken as classifiput is much greater than that of another class that is
ignored in the training procedure. The F measure of thestrategies is low. Extreme machine learning
performance shown in Number 33 is poor.

Compared with all the above mentioned classifiers includiaming, Cost-sensitive, algrithm-based
methods, our proposed framework, whose results showedumber 34 in Table 2, achieves the best
performance based on F-measure. On the oil spillsitahe performance of Sampling and Cost-sensitive
classification is not superior to that based on originagification. The experiment on Cost-sensitive MD
showed that most oil spills are detected correctly, andpftvof “look-alike” examples are classified as oll
spills, mainly because the higher cost of an oil spilhpsghe decision threshold toward the majority class.

4 Conclusion

In this paper, we performed many classifications toystoidl spill detection using imbalanced learning
methods. We analyzed the influence an imbalanced trainingasein detecting oil spills. We drew the
conclusion that we must consider oil spill importancammsdditional process in classification. Furthermore,
regarding imbalanced oil spill learning, we devised a nowhéwork that achieves its best performance
based on and F measures. However, due to the limitatitmeodil spill training data, we didn’t conduct
more experiments to further identify the advantages of oyrogea framework.
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