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ABSTRACT 
 

Aims: The aim of this article is to propose a boundary integral equation algorithm for modeling and 
optimization of magneto-thermoelastic problems in multilayered functionally graded anisotropic 
(MFGA) structures.  
Study Design:  Original research paper. 
Place and Duration of Study: Jamoum laboratory, January 2018. 
Methodology: a new dual reciprocity boundary element algorithm was implemented for solving the 
governing equations of magneto-thermoelastic problems in MFGA structures. 
Results: A numerical results demonstrate validity, accuracy, and efficiency of the presented 
technique. 
Conclusion: Our results thus confirm the validity, accuracy, and efficiency of the proposed 
technique. It is noted that the obtained dual reciprocity boundary element method (DRBEM) results 
are more accurate than the FEM results, the DRBEM is more efficient and easy to use than FEM 
because it only needs the boundary of the domain needs to be discretized. 
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1. INTRODUCTION 
 
An understanding of behaviour of functionally 
graded anisotropic magneto-thermoelastic 
materials has great practical applications in 
applied sciences and engineering. In recent 
years, many researchers discussed the behavior 
of MFGA structures. With the new advances in 
computer hardware and software, it is now 
possible to solve complex magneto-thermoelastic 
problems by using the DRBEM.  which proposed 
by Nardini and Brebbia [1]. The interested 
readers can find more details in the following 
references [2-6].  
 
The aim of this article is to propose a new 
DRBEM algorithm for solving the governing 
equations of magneto-thermoelastic problems              
in MFGA structures. The obtained                   
numerical results demonstrate validity,            
accuracy, and efficiency of the proposed 
technique.  
 

2. FORMULATION OF THE PROBLEM 
 
Consider a MFGA structure occupies the region 
� = {(�, �, �): 0 < � < ℎ, 0 < � < �, 0 < � < �} . At 
each and every point on the boundary � , the 
temperature and displacement are suitably 
specified. 
 
According to Green and Naghdi theory, the 
governing equations of MFGA structures for the 
�th layer, can be expressed as [7-10]: 
 
���,� + ���,� = ��(� + 1)��̈�

� 																																					(1) 
 

��� = (� + 1)�������
� ��,�

� − ���
� (�� − ��

+ ���̇
�)�																																											(2) 

 

��� = ��(� + 1)��ℎ���� + ℎ���� − ���(ℎ����)�				(3) 

 

�����
�∗ + ���

�
�

��
�� �,��

� + ���̇

= ���
� ���̈�,�

� + ����(� + 1)��̈�		(4) 

 
where ��� , ��� , ��

�  and ��  are respectively 
mechanical stress, ���  Maxwell’s stress, 

displacement and temperature, ��, �����
� , ���

� , ��, 

ℎ�, ���
�  ���

�∗ , ��  and �  are respectively reference 
temperature, constant elastic moduli, stress-
temperature coefficients, magnetic permeability, 
perturbed magnetic field, thermal conductivity 
coefficients, new material coefficients associated 
with the GN theories, density and time, �� is the 
specific heat capacity, �� is the relaxation times, 
	�  is the heat source, ; � = 1, 2, … , � − 1 . 
represents the parameters in multilayered            
plate, respectively, and �(�)  is a given 
nondimensional function of space variable �. We 
take �(�) = (� + 1)� , where �  is a 
dimensionless constant. 
 

3. DRBEM IMPLEMENTATION 
 
Using the same technique of Fahmy [11-13] for 
the current problem and implementing the 
DRBEM, we can write the boundary integral 
representation formula of coupled 
thermoelasticity as follows: 
 

��
� (�) = �����

�∗ ��
� − ����

�∗ ��
� ��C

�

+�����
�� (�)

�

���

+ �����
�∗ ���

��
− ���

�∗ ���
��
���

�

� ��
�
					(5) 

 
According to Fahmy [14], the DRBEM equation 
(5) can be written as:  
 
��� − �� = ���� − �℘���																																													(6) 

 
An implicit-implicit staggered algorithm based on 
DRBEM was implemented for for solving the 
governing equations which can be written using 
(6) as follows: 
 

�⏞ �̈ � + Γ⏞ � �̇ + �⏞ � � = ℚ⏞
�
																																			(7) 

 

Χ⏞ �̈� + Α⏞ �̇� + Β⏞ �� = ℤ⏞ �̈ � + ℝ⏞ 																									(8) 
 

where the matrices in (7) and (8) are as follows: 
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� = ��℘� − �������, �⏞ = ��Ⅎ�+ ��̅� �, Γ⏞ = �Γ��� , 

�⏞ = −��+ ��ℬ��′�� + ���, ℚ⏞
�
= −���+ ����, Χ⏞ = −����(� + 1)�, 

Α⏞ = ���
�

�

���

�

���
, Β⏞ = ���

�∗
�

���

�

���
, ℤ⏞ = ���

� ��, 

ℝ⏞ = −���̇. 
 

  

Equations (7) and (8) yield the following system [15]: 
 

�⏞ �̈���
� + Γ⏞ ��̇��

� + �⏞ ����
� = ℚ⏞���

��
																																																																																																																		(9) 

 

Χ⏞ �̈���
� + Α⏞ �̇���

� + Β⏞ ����
� = ℤ⏞ �̈���

� + ℝ⏞ 																																																																																																							(10) 
 

where ℚ⏞���

��
= �����

��
+ ���� and ����

��
 is the predicted temperature. 

 
Integrating Eq. (7) and using Eq. (9), we get 
 

��̇��
� = ��̇

� +
∆�

2
��̈���

� + �̈�
� �																																																											 

											= ��̇
� +

∆�

2
��̈�

� +�⏞
��
�ℚ⏞���

��
− Γ⏞ ��̇��

� − �⏞ ����
� ��																																																																									 (11) 

 

����
� = ��

� +
∆�

2
���̇��

� + ��̇
� �																																																												 

											= ��
� + ∆���̇

� +
∆��

4
��̈�

� +�⏞
��
�ℚ⏞���

��
− Γ⏞ ��̇��

� − �⏞ ����
� ��																																																								(12) 

 
From Eq. (11) we have 
 

��̇��
� = Υ�

��
���̇

� +
∆�

2
��̈�

� +�⏞
��
�ℚ⏞���

��
− �⏞ ����

� ���																																																																																(13)	 

 

where Υ� = �� +
∆�

�
�⏞

��
Γ⏞� 

 
Substituting from Eq. (13) into Eq. (12), we derive  
 

����
� = ��

� + ∆���̇
� +

∆��

4
																																																				 

	��̈�
� +�⏞

��
�ℚ⏞���

��
− Γ⏞Υ�

��
���̇

� +
∆�

2
��̈�

� +�⏞
��
�ℚ⏞���

��
− �⏞ ����

� ��� − �⏞ ����
� ��																														(14) 

 
Substituting ��̇��

�  from Eq. (13) into Eq. (9) we obtain 
 

�̈���
� = �⏞

��
�ℚ⏞

���

��
− Γ⏞ �Υ�

��
���̇

� +
∆�

2
��̈�

� +�⏞
��
�ℚ⏞

���

��
− �⏞ ����

� ���� − �⏞ ����
� � 																								(15) 

 
Integrating Eq. (8) and using Eq. (10) we have 
 

�̇���
� = �̇�

� +
∆�

2
��̈���

� + �̈�
��																																							 

										= �̇�
� +

∆�

2
�Χ⏞

��
�ℤ⏞ �̈���

� + ℝ⏞ − Α⏞ �̇���
� − Β⏞ ����

� � + �̈�
��																																																																	 (16) 
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����
� = ��

� +
∆�

2
��̇���

� + �̇�
��																																																																																 

								= ��
� + ∆��̇�

� +
∆��

4
��̈�

� + Χ⏞
��
�ℤ⏞ �̈���

� + ℝ⏞ − Α⏞ �̇���
� − Β⏞ ����

� ��																																																			 (17) 

 
From Eq. (16) we get 
 

�̇���
� = Υ�� ��̇�

� +
∆�

2
�Χ⏞

��
�ℤ⏞ �̈���

� + ℝ⏞ − Β⏞ ����
� � + �̈�

��� 																																																																								(18) 

 

where Υ = �� +
�

�
Α⏞ ∆�Χ⏞

��
� 

 
Substituting from Eq. (18) into Eq. (17), we have 
 

����
� = ��

� + ∆��̇�
� +

∆��

4
��̈�

� + Χ⏞
��
�ℤ⏞ �̈���

� + ℝ⏞ �� 

	−Α⏞ �Υ�� ��̇�
� +

∆�

2
�Χ⏞

��
�ℤ⏞ �̈���

� + ℝ⏞ − Β⏞ ����
� � + �̈�

���� ��−Β⏞ ����
� ��																																																				(19) 

 
Substituting �̇���

�  from Eq. (18) into Eq. (10) we obtain 
 

�̈���
� = Χ⏞

��
�ℤ⏞ �̈���

� + ℝ⏞ � 

		�−Α⏞ �Υ�� ��̇�
� +

∆�

2
�Χ⏞

��
�ℤ⏞ �̈���

� + ℝ⏞ − Β⏞ ����
� � + �̈�

���� − Β⏞ ����
� �																																																				 (20) 

 
Using the algorithm of Fahmy [16-22], we have the temperature and the displacements. 
 

4. SHAPE DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION 
 
Thus, the design sensitivities with respect to the design variables ��  for the displacement and 
temperature which describe the structural response are performed by implicit differentiation of 
equations (9) and (10), respectively.  
 
Let � be a region with boundary C and continuous functions � and � satisfy 
 

� �
��

���
−
��

���
�

�

������ = � (�	��� +�	���)	
�

																																																																														(21) 

 

The area � =̅
�

�
∫ ����
��
��

= ∬ �������
 of the domain R can be written over the boundary using the 

Green's theorem as [16-18] 
 

� =̅
1

2
� (��	��� − ��	���)
�

																																																																																																																					(22) 

 

By discretizing the boundary of the structure into �  quadratic boundary elements, we have the 
following relation at �th element  
 

��(�) = ��(�)��
� 																																																																																																																																						(23) 

 

Also, the area can be expressed as follows 
 

� =̅
1

2
�� [��(�)�� + ��(�)��]

�

��

�

���

�(�)��																																																																																														(24) 
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where �� and �� can be written in terms of the Jacobian matrix of the transformation �(�) as 
 

�� =
���

��̅
=
���/��

��/̅��
=
���/��

�(�)
																																																																																																																					(25) 

 

�� = −
���

��̅
= −

���/��

��/̅��
= −

���/��

�(�)
																																																																																																											(26) 

 
Substitution of equations (25) and (26) into equation (24) yields  
 

� =̅
1

2
�� ���(�)

���
��

− ��(�)
���
��

�
�

��

�

���

��																																																																																																						(27) 

 
By differentiating (27) taking into consideration that 
 

�

���
�
���(�)

��
� = 0																																																																																																																																																(28) 

and 
�

���
���(�)� = 0																																																																																																																																																				(29) 

 
Therefore 
 

��̅

���
=
1

2
�� �

���(�)

���

���
��

− ��(�)
�

���
�
���
��

��
�

��

�

���

��																																																																																			(30) 

 
If �� is the �� coordinate of a movable node, then  
 

�

���
�
���(�)

��
� = 0																																																																																																																																																(31) 

and 
�

���
���(�)� = 0																																																																																																																																																				(32) 

 
Therefore 
 

��̅

���
=
1

2
�� ���(�)

�

���
�
���
��

� −
���(�)

���
�
���
��

��
�

��

�

���

��																																																																														(33) 

 
where weight minimization is equivalent to area minimization. 
 
Now, we consider the following minimization problem 
 

Minimize                                        �(̅��)																																																																																																		(34) 
 
Subject to                                        ��(��) ≤ 0,				� = 1, … ,�																																																								(35) 
 
		��

� ≤ �� ≤ ��
�																																																																																																																																																					(36) 

where �� = [��, ��, … , ��]
�. 

 
The feasible direction method (FDM) can be successfully applied for solving the current optimization 
problem using the following iteration process: 
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�� = ���� + ����																																																																																																																																																		(37) 
 
Under the following condition 
 

�(̅��) − �(̅����) ≤ �																																																																																																																																											(38) 
 
where ℎ, ε, �� and ��  are respectively iteration number, predefined tolerance, line step parameter, 
search direction �� which can be defined as 
 

�� = −����(̅��)																																																																																																																																																	(39) 
 
where the inverse Hessian matrix can be approximated in terms of the identity matrix � by 
 

���� = �� −
����

(��)���
��� �� −

��(��)�

(��)���
� +

��(��)�

(��)���
																																																																															(40) 

 
In which 
 

	�� = ���� − ��,				�
� = ��(̅����) − ��(̅��),				�

� = � 
 
Using FDM, we have 
 

��(̅��)� ≤ 0																																																																																																																																																										(41) 
and 

���(��)� ≤ 0																																																																																																																																																							(42) 
 
Now, we want to solve the following search direction problem [19]									 

												 
Maximize   ℬ  
 

Subject to    �����(��) + ��ℬ ≤ 0																																																																																																													(43) 
 
                    ����(̅��) + ℬ ≤ 0																																																																																																																						(44) 
 
                    −1 ≤ � ≤ 1																																																																																																																																			(45) 

 
where �� is the push-off factor which can be written as 
 

�� = �1 −
��(��)

�
�

�

��																																																																																																																																							(46) 

 
where � and �� are constants. 
 
We will use the preceding formulation when the design is inside the feasible domain. But when the 
design is outside the feasible domain, we will solve the following search direction problem  
 

Maximize   ��(̅��). � + Φℬ  
 
Subject to    ���(��). � + ��ℬ ≤ 0, � ∈ �																																																																																																(47) 
 
                    ��. � ≤ 1																																																																																																																																								(48) 

 
where � and Φ	are respectively potential constraint set and weighting factor.  
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5. NUMERICAL RESULTS AND DISCUSSION 
 
In order to illustrate the numerical results of the current study, the following physical constants for 
material “A” are as follows 
 
Elasticity tensor 
 

����� =

⎣
⎢
⎢
⎢
⎢
⎡
430.1 130.4 18.2
130.4 116.7 21.0
18.2 21.0 73.6

0						 0 		201.3
0						 0 			70.1
0						 0 					2.4

0 0 0
0 0 0

201.3 70.1 			2.4

19.8 −8.0		 	0			
−8.0 29.1 0		
	0 0	 147.3		⎦

⎥
⎥
⎥
⎥
⎤

 GPa 

 
Mechanical temperature coefficient 
 

��� = �
1.01 2.00 0
2.00 1.48 0
0 0 7.52

� ∙ 10�	 N/Km� 

 
Tensor of thermal conductivity 
 

��� = �
5.2 0 0
0 7.6 0
0 0 38.3

� W/Km 

 
Mass density � = 7820	kg/m� and heat capacity � = 461 J/kg	K. 
 
A prismatic material is taken as material B in the numerical calculations with the following physical 
constants 
 
Elasticity tensor 
 

����� =

⎣
⎢
⎢
⎢
⎢
⎡
60.23 18.67 18.96
18.67 21.26 9.36
18.96 9.36 47.04

−7.69	 15.60 −25.28
−3.74						 4.21 −8.47
−8.82		 15.28 −8.31

−7.69 −3.74 −8.82
15.60 4.21 15.28
−25.28 −8.47 −8.31

10.18 −9.54	 5.69
−9.54 21.19 −8.54		
	5.69 −8.54 20.75		 ⎦

⎥
⎥
⎥
⎥
⎤

 GPa 

 
Mechanical temperature coefficient 
 

��� = �
0.002 0.02 0.03
0.02 0.004 0.04
0.03 0.04 0.05

� ∙ 10�	 N/Km� 

 
Tensor of thermal conductivity 
 

��� = �
0.8 0.1 0.15
0.1 0.9 0.12
0.15 0.12 0.7

� W/Km 

 
Mass density � = 1600	kg/m� and heat capacity � = 0.1 J/kg	K. 
Also, a monoclinic North Sea sandstone reservoir rock is taken as material C in the numerical 
computations with the following physical constants 
 
Elasticity tensor 
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����� =

⎣
⎢
⎢
⎢
⎢
⎡
17.77 3.78 3.76
3.78 19.45 4.13
3.76 4.13 21.79

0.24	 0.28 	0.03
0						 0 	1.13
0						 0 	0.38

0 0 0
0 0 0

0.03 1.13 0.38

8.30 0.66		 	0			
0.66 7.62 0		
	0 0	 7.77		⎦

⎥
⎥
⎥
⎥
⎤

 GPa 

 
Mechanical temperature coefficient 
 

��� = �
0.001 0.02 0
0.02 0.006 0
0 0 0.05

� ∙ 10�	 N/Km� 

 
Tensor of thermal conductivity 
 

��� = �
1 0.1 0.2
0.1 1.1 0.15
0.2 0.15 0.9

� W/Km 

 
Mass density � = 2216	kg/m� and heat capacity � = 0.1 J/kg	K. 
 

Table. 1. Optimization analysis for considered materials 
 
Material Iterations Percentage change between final and 

initial value 
Maximum 
stress 

Reduction of 
compliance 

A 12 65% 0.411 92.40 
B 12 65% 0.390 90.87 
C 12 73% 0.223 91.10 

 
Table 2. Comparison of computer resources needed for FEM and DRBEM modelling of the 

right half of the link plate design 
 

 FEM DRBEM 
Number of elements 12980 48 
CPU-Time [min.] 190 3 
Memory [Mbyte] 140 0.6 
Disc space [Mbyte] 200 0 
Accuracy of results [%] 2.3 1.3 
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For the purpose of numerical calculations of 
materials A, B and C, we considered the 
following constants 
 
�� = 1000000	 Oersted, � = 0.5  Gauss/Oersted, 
�� = 0.5, � = 0.5, ∆� = 0.0001, �� = 0.5, � = 1. 
 
It can be noticed from numerical results that the 
DRBEM results are in very good agreement with 
those obtained using the finite element method 
(FEM) of Gao and Yao [23]. The right half of the 
link plate shown in Fig. 1a and design variables 
shown in Fig. 1b are considered.  The optimum 
shapes of the considered structure for selected 
anisotropic materials produced from the current 
study are shown in Fig. 2. It can be seen that the 
weight and the maximum stress have increased. 
Fig. 3 shows the iteration history for elastic 
compliance of the link plate for selected materials 
A, B and C.  It can be seen that the weight and 
the maximum stress of the link plate have been 
decreased (see Table 1).  Figs. 4 and 5 show the 

sensitivities of the displacement distributions. 
Also, Fig. 6 shows the sensitivity of the 
temperature distribution to demonstrate the 
accuracy of the current technique technique (see 
Table 2). For further finite difference method 
details, we refer the reader to many researchers 
[24-29]. Also, for more boundary element method 
details we refer the reader to many researchers 
[30-55]. 
 

6. CONCLUSION 
 

Our results thus confirm the validity, accuracy, 
and efficiency of the proposed technique. It is 
noted that the obtained dual reciprocity boundary 
element method (DRBEM) results are more 
accurate than the FEM results, the DRBEM is 
more efficient and easy to use than FEM 
because it only needs the boundary of the 
domain needs to be discretized. 
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