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ABSTRACT 
 

The impact of radiation pressure, Poynting-Robertson Drag (Pr-drag) force and triaxiality of the 
main bodies surrounded by a belt (circumbinary disc) on the positions and stability of a third body of 
an infinestisimal mass aroud the collinear Lagrangian points in the elliptic restricted three body 
problem (ER3BP) are studied. We have obtained the solutions to the location of collinear 
Lagrangian points    (  =1,2,3). In order to investigate the stability of the model two binary system 
(FL virginis and Procyon) were employed. It was found that the positions and stability of the libration 
points are affected by trixiality, Pr-drag force and the gravitational pontetial from the belt. The 
collinear libration points were found to be unstable. 
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1. INTRODUCTION 
 
The solution totwo-body problem have been 
found, but the solution to three- body problem is 
yet unobtainable when three bodies are heavenly 
bodies for example earth, moon and sun. For a 
close close form solution to be found Euler in 
1765 introduced the restricted three body 
problem, a simplification of the three body 
problem where the small body is assumed to 
have a negligible mass compared to the two 
other larger bodies and rotatesin the plane 
defined by the two main bodies aound their 
common centre of mass. An example of the 
restricted three body problem is earth, moon and 
an artificial satellite. 
 
During the classical era of investigation of the 
restricted three body problem Euler in 1765 and 
Lagrange in 1772 obtained a number of 
particular solutions from the revolving frame 
where the infinitesimal mass has zero velocity 
and acceleration. The solutions obtained are 
found to be the equilibrium positions, which are 
five in the R3BP and are called Lagrangian 
equilibrium points: the first three (L1,L2, L3) are 
called collinear equilibrium (libration) points and 
the remaining two are triangular equilibrium 
(libration) points named Langragian equilibrium 
points (L4 and L5).The collinear equilibrium 
pointsare located on the line joining the 
primaries. 
 
For example in the earth –sun system in which 
the earth orbits the sun, the three collinear points 
lie on the line joining the earth and the sun.L1is 

between sun and the earth,L2 in the same 
direction as the earth,L3is opposite the earth. The 
collinear points are unstable and any object such 
as satellite placed at this points cannot remain in 
position except some thrusters are attached. This 
has allowed SOHO’s satellite to be kept at L1to 
monitor the sun and NASA satellite called WMAP 
to be stationed at L2. If trusthers are not attached, 
several forces such as gravitational, corolis force 
and centrifugal forces can drift the satellite from 
position. 
 
Apart from these forces other forces such as 
radiation pressure force, main body shapes, 
circumbinary disc and P-R drag force can affect 
the position of the third body at equilibrium 
points. According to Singh [1] there are several 
forces in the solar system as such it is 
inappropriate to consider gravitational force 
alone when studying the dynamics of a solar 
system. Radzievskii [2] pointed out that “the 
repelling forces of radiation pressure is 
dorminant when a star collides with a gas                  
and dust particles apart from the gravitational 
force”. The forces have substantial effect                        
on the stability of equilibrium points. In particular, 
the radiation pressure force which is the                  
major force acting on planetary objects after 
gravity. The classical R3BP is inadequate in 
describing the dynamics of a particle                   
emitting radiation therefore in other to account     
for this force in the equations of motion the 
classical potential function was amended to 
admit it. Thus the problem becomes generalized. 
Kumar and Ishwar [3] included radiation               
pressure in their study. Singh [1] study “the   

 

 
 

Fig. 1. The euler solution: The three bodies remain collinear at all times, in elliptical orbits 
around the centre of mass. Left: All masses equal. Right: Unequal masses 
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effect small perturbations of the Corolis and 
centrifugal forces, triaxiality and radiation 
pressure of the primaries on the triangular 
libration points”. 
 
The generalization attracted a lot of researchers 
to study the effect of the pertubations on the 
location and stability of R3BP under different 
characterizations. The pertubations changes the 
position of the third-body (infinitesimal mass) at 
equilibrium points slightly and if it departs from 
the equilibrium points significantly it may not 
return which may result to instability and the 
equilibrium points is said to be unstable. If 
however, the body returns to its original position 
after departure, such a position of equilibrium 
point is said to be stable. 

 
“The effect of triaxiality of the bigger primary and 
oblateness of the companion on the location and 
stability of the collinear equilibrium pointsin 
ER3BP have been studied by Singh and Umar” 
[4]. They observed that the perturbations 
changes the locations and stability of the 
collinear libration points due to the effect of 
eccentricity and the semi-major axis of the 
primaries and are unstable. Recently, Vicent et 
al. [5] shows that pertubations can lead to 
increase in number of collinear points. Four 
additional collinear equilibrium points Lni = 1, 2, 
3, 4, in addition to the three Eulerian points Lni = 
1, 2, 3, of the classical case were obtained-a 
total of seven collinear points. It was observed 
that out of the four collinear equilibrium points 
two:Ln1 and Ln2 are due to the effect of potential 
from the belt, while Ln3 and Ln4 arise from the 
effect of triaxiality-in a generalized restricted 
three-body problem (R3BP) with an oblate-
infinitesimal body and triaxial- radiating 
primaries. [6] explored “vinti’s method tolocate 
the collinear points expressed in the form of 
infinite series in the elliptical restricted three body 
problem when both the primaries are radiating 
and oblate it is found that all the three collinear 
equilibrium points are unstable”. Using two binary 
systems Luyten-726 and Kruger-60 a defining 
parameter was established for possible range of 
stability. “Using analytical method the effect of 
the radiation pressure, forces due to stellar wind 
and Poynting-Robertson drag on the dust 
particles are studied” by [7].The five classical 
equilibrium points (L1, L2, L3, L4, L5) are 
obtained.It is seen that the collinear equilibrium 
points (L1, L2, L3,) are shifted along the y-
coordinate and do not lie on the line joining the 
primaries due to the effects. In their paper [8] 
examines the equilibrium points and stability of 

an oblate-spheroidal infinitesimal mass under the 
influence of a gravitational radiating primary and 
an oblate-shaped secondary using the model of 
the restricted three-body problem. Five collinear 
equilibrium points are obtained due to the 
presence of oblateness of either the second 
primary or the test particle. The collinear points 
are tested for stability by inspecting the root of 
the characteristic equation of the system it was 
found that collinear points are unstable due to 
the presence of a positive root.The existence of 
collinear equilibrium points, their solution and 
stability analysis in the Chermnykh-Like problem 
under the effect of radiation pressure, oblateness 
and a discwas investigated by [9] and it shows 
that “the presence of the disc, creates a new 
collinear equilibrium point in addition to the three 
points of the classical problem. For the linear 
stability analysis of the collinear equilibrium 
points the disc’s outer radius b instead of mass 
parameter µ was used and it is found that all the 
collinear equilibrium points are unstable except 
L3 which is stable for b ∈ (1.3312, 1.5275) 
provided that remaining parameters are fixed”. 
 

“The Poynting-Robertson (P-R) effect also called 
Poynting-Robertson (P-R) Drag force was named 
after .John Henry Poynting and Howard Percy 
Robertson”. [10] described the effect based on a 
theory that supersede the theory of relativity. 
Later, [11] described the effect in terms of 
general relativity. The P-R Drag force is a 
component of radiation pressure and is 
tangential to the grain’s motion.It is an effective 
force that opposes the direction of the dust 
grain’s motion and causes a drop in the grain’s 
angular momentum. An investigation by [12] 
reveals that the P-R drag forceis the main force 
causing instability at the equilibrium point and not 
the radiation pressure, oblateness and 
centrifugal forcealthough they also decrease the 
region of stability.He showed that in the region 
when motion around the triangular points are 
stable any slight increase of the P-R drag of the 
bigger primary by an almost negligible value 
could result to an unstable equilibrium point 
overrides other effects and changes stability to 
instability. 
 

In this work we wish to study the positions and 
stability of collinear equilibrium points, when the 
primaries are triaxial,emmiting radiation and 
surrounded by circumbinary disc (belt) with the 
smaller primary having an effective P-R Drag 
force.Two radiating binary stars (FLvirginis and 
Procyon) see [13] Singh and Isah (2021). The 
paper is an extension of the works of [13] Singh 
and Isah (2021). We found that adding PR-Drag 
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force to the previous model [13] Singh and Isah 
(2021) has little or no effect on the system 
dynamics. The paper is organized as follows: 
section 1 is introduction, in section 2 the 
equations of motion are described in detail, while 
positions of equilibrium points and analysis of 
their stability can be found in section 3, section 
4contains the numerical study of the system 
finally, discussion and conclusion are presented 
in section 5. 

2. EQUATION OF MOTION 
 
The equations of motion of the infinitesimal mass 
in the three-dimensional restricted three-body 
problem with the origin at the center of mass, in a 
barycentric rotating (also called synodical) 
coordinate system under the gravitational 
influence of two radiating triaxial bodies with the 
P–R drag present and surrounded by belt have 
the form: 
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,   <<1, ( =1,2,3,4) 

 

Where   is the mass ratio,   the mean motion,M1 denotes the mass of the larger primary, while M2 

stand for the mass of the smaller primary,  ( =1,2) are their radiation factors,   and    represent 
distances of the third body from the bigger and smaller primary respectively,  and    denote the 

triaxiality of the bigger and smaller primary respectively, while    denote the triaxiality of the bigger 

primary and    stands for the triaxiality of the smaller primary. 
 

The lengths of the axes are denoted by a, b, c for the bigger primary and  ′,  ′,  ′ for the smaller 

primary, a is the semi-major axis of the orbits of the primaries and   the enccentricity.   <<1 is the 

total mass of the belt,            is the radial distance of the third body from the origin.T =      A 

and B are the parameters which determine the density profile of the belt ([14] Miyamoto and Nagai, 
1975; [15] Jiang and Yeh, 2003; [16] Kushvah, 2008).The parameter B controls the size of the core of 
the density profile and is known as the core parameter,rcis the radial distance of the third body from 

the collinear point under consideration.   
       

  
 denotes the P-R drag of the smaller primary and 

Cd is the dimensionless speed of light. The configuration of the problem is shown below: 
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Fig. 2. The configuration of the problem 
 

3. LOCATIONS AND STABILITY OF THE 
COLLINEAR LIBRATION POINTS 

      

In order to obtain the location of collinear points 
we adopt the procedureused in [13]. At 
equilibrium pointsξ′= η′= ξ′′ = η′′ = ζ′= ζ′′ = 
0.Therefore,equilibrium points lie in the ξη-plane 
and are the solutions of equations       

 ,ζ= 0  
 

The collinear points lieon the ξ- axis thereforeη = 
0, using Equation (5) in above equations and 
avoiding situations  =    and   we have: 

     
            

      
 

                     

       
 

          

        
 

                   

         
 

   

          
=0      

              (7)
      

Now we consider, 
 

              ,  =             (8)
     
   

Rewiting equation (7) using equation (8) we 
obtain: 
 

     
       

      
  

                

       
  

   

      
  

            

       
  

   

          
= 0          (9) 

 
In order to locate the collinear points L1,2,3 we 
divide the orbital plane into three parts  >  , 

  < <   and   >  with respect to the primaries. 
 

3.1 Position of L1 ( >  ) 
 

Let the collinear libration point L1 be on the right 
hand side of the smaller primary at a distance   
from it on the  - axis  
 

In the interval ( >  ) we let  -  =  ,  -   = 
1+     = 1+   +           

                 = 1+  ,   =         (10)  
 

 
 

Fig. 3. Position of collinear libration point L1 
 

Thus by substituting equation (10) in the equation (9) we have: 
 

                                                     
         

 4 2 2−3 2 3− 41+ 4 2−  1+ − {(1+ − )2+ 2}3 2= 0        (11)   

 

After expansion we obtain: 
 

                                                          
  

                            
                                   

 2 1+32  1 1−  2 1−32  3−  4 2 4−4  2+6  3 2−3  4 2 3−2  2+18  3 2−9  4 2
 2−38  3 2−4  4 2 −(3 2 3−  4 2−  (1+ − ){(1+ − )2+ 2}32 = 0  

M1= 1-    M2=     L1 

 (    ) = (1- ,0) (    ) = (- ,0) (   ) 
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                                                                                                                                              (12)   
     

3.2 Position of L2 (       ) 
 

Let the collinear libration point L2 be on the left hand side of the smaller primary at a distance  from it 

on the  - axis  
 

 
 

Fig. 4. Position of collinear libration point L2 

 

In the interval L2 (        ), we let                          and 
                                            (13)
   

Using equation (13) in the equation (9) we get: 
 

                                                     
         

 4 2 2−3 2 3− 41− 4 2−  (1− − ){(1+ − )2+ 2}32= 0     
 (14)  

 

Hence expanding equation (14) we obtain: 
 

                                                           
  

                            
                                   

 2 1+32  1 1−  2 1+32  3−  4 2 4−42  2+6  3 2−3  4 2 3+2  2+18  3 2−9  4
 2 2−38  3 2−4  4 2 +3 2 3−  4 2−  (1− − ){(1+ − )2+ 2}32 = 0   
                                                       (15) 

 

3.3 Position of L3 (    ) 
 
Let the collinear libration point L3 be on the left hand side of the bigger primary at a distance 
1-  from it on the   - axis. 
 

 
 

Fig. 5. Position of collinear libration point L3 

 

Finally, in the interval (    ) we let 
 

                  , and                         (16) 
 

Using equation (16) in the equation (9) we get: 
 

M1= 1-   
M2=   L2  

(    ) = (- ,0) (    ) = (1- ,0) (   )  C 
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 4 1+2 1− 42− 2 2−3 2 3− 41− 4 2−  (−1− + ){(−1− + )2+ 2}32 = 0  (17)  

Expanding equation (20) we get: 
 

                                                            

      
                                   

                         

41  1−26  2+32 1 1− 2 1−2  1 1+  2 1+2  3 2−  4 2) 4+2 2680+360 −882 1−2 
 1+  2+12(−4 1 1+2 2 1+4  1 1−2  1 1−2  3 2+  4 2 3+−2 2344+248 +826 1−2
6  1−26  1+18 1 1−9 2 1−18  1 1+9  2 1+241  2+18  3 2−9  4 2) 2+2 2112+9
6 −8−16 1+16  1−24 1 1+12 2 1+24  1 1−12  2 1−5  2−3  3 2−12  4 2 1+2 2−1
6+16 +84 1−4  1−6 2 1−12  1 1+6  2 1+ 2+32  3 2−  4 2 
−  (−1− + ){(−1− + )2+ 2}32= 0                                                                        
(18) 

 
We shall further solve Eqs. (12), (15) and (18) numerically for the real values of  .Then using its 
values we shall find the positions of L1,2,3.    
 

3.4 Stability of the Collinear Equilibrium Points 
 
We use the characteristic equation of the system as given by Singh and Isah (2021)13, to determine 
the stability of the collinear libration point    ( =1,2,3) which is: 
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Taking the second partial derivative of equation (2), with    we have: 
 

  
         

  
    

 
 

  
 
       
      

 
                

      
 

   
        

 
            
        

 
  

          
 

    

          
   

 
 

  
         

  
     

 

   
       

      
 

                 

       
 

   

        
 

             

         
 

  

   
        

  

4 2  + −1 23                       
(20)           
   

  
     

                          (21) 

 
It is obvious that   

                        (22) 

 
3.4.1 Stability of collinear point L1 in the interval       
 
In the first interval we have       
 

   =                and                                                     (23) 
   
Substituting equation (23) in the equation (7), we get: 
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Putting equation (24) in the second equation of (20), we obtain  
 

  
         

  
     

 

   
 

  
     

              

   
  

   

  
  

            

   
  

        

   
        

  

31− 4 1−3 22 15+  2 23+3 4 3−3 4 22 25+    2+ 232+4 2  + −1 23  
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Neglecting higher order terms in e
2
,a,σi (i=1,2,3,4) and Mb we have 

 

  
   

 

  
 

 

  
 
   
  

 
 
 

  
 

 

  
  

    

   
  

         

  
 
        

  
  

        
  

 
       

 
          

   
        

  
           

  
  

 

 

Thus   
    , since  <

 

 
                           and   <<1  

 
Also, for the collinear points lying in the interval, 
  < <   and   >  with respect to their primaries 

with η=ζ=0, we have   
       

    ,   
       

      
Since   

   
 
      

   
 <0, the discriminant of 

equation (19) is positive for all intervals and 
therefore the characteristic roots can be written 
as; 
 

                                          (26)

   
Where c and d are real numbers 
 
We therefore conclude that the collinear libration 
points are unstable due to the nature of the 
characteristic root of equation (26).They are 
mixtures of real and complex roots,                                  
for the collinear libration points to be stable the 
four roots must pure be imaginary roots                      
[17]. 
 

4. NUMERICAL APPLICATION 
 
In this section the location of collinear libration 
points   (   = 1,2,3) and their corresponding 
characteristic roots for the two binary system FL 
virginis and Procyon are obtained 
numerically.Using the definition of parametres as 
in [13] which we restate here,we have the 
radiation pressure factors q1 and q2 of the bigger 
and the smaller primary calculated as: q=1-
(˄  L/r  M) on the basis of Stefan 
boltzmann’slaw, q is the radiation pressure 
efficiency of a star, where M mass of a star and 
and L the luminousity of a star, r is the radius and 

  the density of a moving test particle, ˄= 
 

     
) 

is a constant. In the centimeter –gram second 

system of units( C.G.S system) ˄= 2.9838  10
-5 

.we take r = 2x10
-2

cm and   = 1.4gcm
-3

 for some 
dust particle. Table 1 contains the numerical data 
of the binary system. Table 2 shows the 
numerical computation of the Location of 
collinear equilibrium points L1,2,3 of the                  
two binary systems (FL virginis and Procyon) for 
different values of the belt and PR-drag.               
The characteristic roots are presented in                 
Tables 3 and 4. 
 
The effects of the gravitational pontetial from the 
belt and Pr-drag on the positions of equilibrium 
points are shown on the graphs in Figs. 6 and 7. 
The numerical data for the binary system              
(Table 1) is obtained from [13]. 
 

5. DISCUSSION AND CONCLUSION 
 
In Tables 2-4 we have used equation (12), (15) 
and (18) to compute numerically, using the 
software mathematica, the positions of the 
collinear equilibrium points for the different 
values of the beltand the pr-drag of the two 
binaries (FL virginis and Procyon). We can see 
from Table 2 and Table 3that the dynamical 
effect of the belt and pr-drag on the positions of 
the collinear equilibrium points of FL virginis and 
procyon are similar because in both cases the 
collinear points L1,2,3 move in the same direction. 
Both L1 and L2moves towards the smaller 
primary , while L3 shifts towards the bigger 
primary. We present in Table 4 and Table 5 the 
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corresponging roots to the locations in Table 2 
and Table 3. 
 
The stability of collinear equilibrium points are 
obtained by substituting Equations (20) and (21) 
in (19). The characteristic roots obtained are 
shown in Table 4 and 5 for the systems FL 
virginis and Procyon. The characteristic roots 
obtained in Table 4 and 5 using the eccentricity, 
semi-major axis and radiation factor of the two 
binary systems with arbitrarily chosentriaxiaity 
coefficients,belt and Pr-drag areunstable due to 
the absence of pure imaginary roots or complex 
roots with negative real parts in the four roots ((   

(i=1,2,3,4)).The presence of positive real parts in 
the roots shows that the collinear libration points 
are unstable.This instability behaviour was 
confirmed by [4] Singh and Umar,; [18] Kumar 
and Naraya, 2012; [19] Singh and Tokyaa, 
2017). We have also shown graphically, the 
effect of the belt and Pr-drag on the positions of 
collinear points (Figs. 6 and 7) by substutimg the 
collinear points of the binaries and the 
increasingly varied values of the belt and Pr-drag 
into equation (19).The graphs show clearly that 
the position of collinear points move                   
uniformly with increasing values of the belt and 
Pr-drag.  
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Fig. 6. The effect of pontetial from the belt and Pr-Drag on L1,2,3 of FL virginis 
Table 1. Numerical data for the binary system 

 

Binary system  Masses Mʘ     Luminosity Lʘ Spectral type 

 M1 M2   L1ʘ L2ʘ  

FL virginis 0.076 0.067 0.3 0.9306ˈˈ 1.372      1.078      M5se/M7 

Procyon 1.53 0.617 0.4 4.3ˈˈ 6.93 0.00049 F5/DA 
Sorce: Stellar-DataBase/The American Astronomical Society/Wikepedia 

 
Table 2. Locations of collinear equilibrium points Li(i = 1,2,3) for the binary system FL virginis 

and procyon for different values of the belt 
 

Binary system Parameters values Location 

FL virginis  Mb    e  a L1 L2 L3 

 0.001 04685 0.3 0.219 1.173789 0.33456876 -1.5326169 
 0.002    1.173779 0.33456868 -1.5326161 
 0.003    1.173768 0.33456861 -1.5326152 
 0.004    1.173754 0.33456855 -1.5326148 

Procyon 0.001 0.2874 0.4 0.714 1.361245 0.19976511 -1.4634387 
 0.002    1.361239 0.19976501 -1.4634379 
 0.003    1.361232 0.19976431 -1.4634371 
 0.004    1.361227 0.19976422 -1.4634364 

For FL virginis  = 0,9996,   = 0,9995, W2=3.39       

ForProcyon  = 0,9995,   = 0,9994, W2=3.39       

 
Table 3. Locations of collinear equilibrium points Li(i = 1,2,3) for the binary system FL virginis 

and procyon for different values of the PR-drag 
 

Binary system Parameters values Location 

FL virginis  W2    e  a L1 L2 L3 

 1.39   
   

, 04685 0.3 0.219 1.244739 0.578634 -1.4849688 

 2.39   
   

,    1.244731 0.578624 -1.4849678 

 3.39   
   

,    1.244726 0.578616 -1.4849667 

 4.39   
   

,    1.244720 0.578607 -1.4849658 

Procyon 1.39   
   

, 0.2874 0.4 0.714 1.128555 0.449471 -1.2433861 

 2.39   
   

,    1.128545 0.449463 -1.2433850 

 3.39   
   

,    1.128537 0.449455 -1.2433841 

 4.39   
   

,    1.128529 0.449447 -1.2433832 

For FL virginis   = 0,9996,   = 0,9995, Mb=0.01 

For Procyon   = 0,9995,   = 0,9994, Mb=0.01 
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Table 4. The characteristic roots (    ,     ) of collinear points for the system FL virginis for 

different values of the belt 
 

L1            Stability behaviour 

1.173789   0.652854   .26644  Unstable 

1.173779   0.652819   .26634  Unstable 

1.173768   0.652792   .26625   “ 

1.173754   0.652740   .26613   “ 

L2            

0.33456876  (5919.01-072.62  )  (5919.01+6072.62  )  Unstable  

0.33456868  (15670.3-7545.3  )  (17545.3+1567.3  )  “ 

0.33456861  (17810.2-0147.9  )  (17810.2+20147.9  )  “ 

0.33456855  (20410.4-3337.2  )  (20410.4+23337.2  )  “ 

L3            

-1.5326169  (66.9213-64.873i)  (54.9571+47.887i)  Unstable 

-1.5326161  (66.8540-57.873i)  (54.626+46.926i)  “ 

-1.5326152  (66.8101-52.873i)  (54.417+43.9029i)  “ 
-1.5326148  (66.9213-48.873i)  (54.309+57.7923i)  “ 

 

Table 5. The characteristic roots (    ,     ) of collinear points for the system procyon for 

different values of the belt 
 

L1            Stability behaviour 

1.361245  0.745982  1.4558i  Unstable 

1.361239  0.746113  1.4543   “ 
1.361232  0.746153  1.45401i  “ 

1.361227  0.746208  1.4535i  “ 

L2            

0.19976511  (0.587461-0.675612 )  (0.578865+0.698567 )  Unstable 

0.19976501  (0.566124-0.672713 )  (0.567891+0.687944 )  “ 

0.19976431  (0.53659-0.665445 )  (0.557875+0.685432 )  “ 
0.19976422  (0.506454-0.660482 )  (0.53475+0.683345 )  “ 

L3             

-1.4634387   0.56789-1.47111i)  0.454078+1.43211i)  Unstable 

-1.4634379   342.444-298.197i)   356.292+288.213i)  “ 

-1.4634371   320.21-275.698i)   347.34+265.843i)  “ 
-1.4634364   310.098-222.143i)   326.174+277.197i)  “ 
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Fig. 7. The effect of pontetial from the Belt and PR-Drag on L1,2,3 of FL procyon 

 
We have studied the positions and stability of 
collinear equilibrium points in the elliptic 
restricted three body problem under the influence 
of triaxiality, radiation, Pr-drag and gravitational 
potential from the belt. We found that the 
positions and linear stability of the collinear 
equilibrium points are affected significantly by 
triaxiality, radiation, Pr-drag and gravitational 
potential from the belt. The collinear equilibrium 
points are found to be unstable. 
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