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Abstract 
 

The objectives of this paper is to investigate singularly perturbed system of the fourth order differential 

equations of the type,  
��

��
= f(t, x, y, μ), μ 

��

��
= g(t, x, y, μ) to establish the necessary and  sufficient new 

conditions that guarantee, uniform asymptotically stable, and absolute  stability of the  system. The 
Liapunov’s functions were the mathematical model used to establish the main results of this study. The 
study was motivated by some authors in the literature, Grujic LJ.T, and Hoppensteadt, F., and the results 
obtained  in this study improves upon their results to the case where more than two arguments was 
established. 
 

 
Keywords: Uniform asymptotical stable; absolute stability; singularly perturbed; differential equations. 
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1 Introduction 
 
Singular perturbation technique, at the third international congress of mathematician in Heidelbery in 1904 
by L. Prandtl through his paper on fluid motions with small friction, was made known to the world. 
Perturbation technique first appeared in Celestial Mechanics while deducing the planetary motions if only 
the sun and one planet are considered; the result is an elliptical motion with sun at the focus. The 
perturbation problem mentioned above is categorized into two cases; Regular and Singular perturbation 
problem. This study focuses on singular perturbation; 
 
Singular perturbation problem is said to occur whenever the regular perturbation limit 
 

 ��(�) → � 0(�)  fails. For example, consider the problem � 
��

��
+ � = 1  whose solution is given by 

�(�, �) = 1 + [�(0) − 1)exp (
��

�
)  where �(0) stands for initial value of  � at  � = 0. For � > 0 the solution 

tends to 1 for any � > 0 �� � → 0. As � → 0, �(�, �) increases monotonically towards the constant limit 1 for 
each  � > 0 ��  �(0) < 1.  For  � = 0 �(�, �) → �(0); � > 0, �(�, �) → 1  
 
Thus �(�, �)  has a discontinuous limit as � → 0.  This type of singularity, generally, occur when �  is 
multiplied with the highest derivative in the system. Singularly- perturbed systems are known to be rather 
widely used in the engineering and technology as models of real processes. Introductory Mathematical 
background for perturbation technique is excrescency covered in references [1,2,3,4,5]. For application in 
engineering and technology see e.g survey by [6,7,8], and  Stability properties of SPS see 
[9,10,11,12,13,14,15,7,8,16,17,18]. 
 
We investigate singularly perturbed systems of order fourth order which  has been reduced to order two, 
written in the form of nonlinear differential equations of the type (1.1) (1.2) with two arguments to establish 
new conditions that guarantee uniform asymptotical stable and absolute stability of the two arguments 
(��, ��)� = 0 of the systems (1.1), (1.2), with the application of Liapunov’s  direct method. 
 
Consider the nonlinear differential equations of the type; 
 

��

��
= �(�, �, �, �),                                                                                                                            (1.1) 

 

�
��

��
= �(�, �, �, �),                                                                                                                         (1.2) 

 
Where, 
 
(��, ��)T   is a vector of state of the whole system, � ∈  ��, � ∈  ��, 
� ∈ ∁ (�  Χ �� Χ  �� Χ ℳ, ��), � ∈ ∁(� Χ �� Χ ��, Χ ℳ, ��).   The parameter  �  is positive and is 
supposed to be arbitrarily small. We set  � ∈ (0,1] =  ℳ 
 
The states � = 0 ��� � = 0 have open connected neighborhoods �� ⊆ �� ��� �� ⊆ �� respectively. The 

vector function  � ��� � are such that for  (��, ��)T  =  0, system (1.1), (1.2) has the only equilibrium state 
in the Cartesian product   �� Χ  �y  of the sets  ��  ��� �y  for any  � ∈ (0,1]. If  � takes zero value, the 
system (1.1), (1.2) degenerates into the system which is described by the differential and algebraic equation. 
 

��

��
= �(�, �, �, 0),                                                                                                                            (1.3) 

 
0 = �(�, �, �, 0).                                                                                                                             (1.4) 

 
It is supposed that  �(�, �, �, 0) vanishes for any  � ∈ �  and  � ∈  �� , Iff  � = 0. 
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This study was motivated by Hoppensteadt, and Lur’e-postnikov, see [16,12], and results obtained in this 
study improve upon their results. They considered one argument in the case when � = 0  and applied 
Liapanov’s function, their results is important in the stability investigation of systems (1.1), (1.2). This 
requirement is motivated by the application of the Liapanov’s coordinate’s transformation by Hoppensteadt 
[12], in the investigation of Singularly Perturbed systems.  The system of lower order 
 

��

��
= �(�, �, 0,0).                                                                                                                              (1.5) 

 
Obtained in his result is important in the Stability investigation of the system of the form (1.1), and (1.2). If  
� > 0 is a sufficiently small value of the parameter, the system (1.1), (1.2) consists of the parts which 
accomplish slow and quick motions. The quick system  �� (or the boundary layer) is obtained from (1.1), 
(1.2) after the change of the time scale by introducing the variable 
 

� = (� − �� )���. 
 
Then, the quick system corresponding to the system (1.2) becomes; 
 

��

��
= �(�, �, �, 0).                                                                                                                            (1.6) 

 

In this system � ��� � ,  � = ��� , − −���,  are scalar and vector parameters introduce instead of � ∈

� ��� � ∈ ��  respectively. We suppose as earlier, that vanishes for any   � ∈ �, � ∈ �� ,  � ∈ (0,1]  if and 
only if y = 0. The separation of the time – scales in the investigation of stability of system (1.1), (1.2) is 
essential due to the fact that the analysis of the degenerate system  �� (1.5) and the quick system �� (1.6), are 
simpler problems in comparison with the general problem of stability of system (1.1), (1.2). 
 

2 Preliminary Notes 
 
2.1 Asymptotic stability conditions 
 

Let  ���   = {�:  � ∈ �� , � ≠ 0}, ��� = ��:� ∈  ��  � ≠ 0�. 

 
The function  �(�, �, �) ∈  �(�,�,�) (�  Χ ��  Χ   ��, �)  and 
 

�� =  
��

��
,    �� �    (

��

�� �  
 ,

��

�� �  
, −−,

��

���   
 )T. 

 
We introduce two assumptions on systems (1.5) and (1.6) connected with positive definite functions 
� ��� �. 
 
Assumption 2.1. If there exist the following conditions: 
 
(1) A decreasing positive definite on  �� , and radically   unbounded for  �� =  ��  function  

� ∈  �(�,�)   (� × ��� , ��);    
 
(2).Positive definite function � ∈  ∁ (��, ��) and � ∈  ∁ (��, ��) ��  ��  ���     �� ,    respectively. 

 
(3) Non – negative numbers ��   ��� ��  ,   ��   < 1,  and the conditions are satisfied: 
 
(a)  ��(�, �) + ��

T (�, �) �(�, �, 0) ≤   −�(�)��� ��� (�, �) ∈ � ×  ���   ; 
(b) ��

T (�, �)[ �(�, �, �, �) −  �(�, �, �, 0)] ≤   ��  �(�) +  ��  �(�), ��� ��� (�, �, �, �) ∈ � × ��� ×  ��� ×  

ℳ. 
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Conditions (1) - (3) (a) of Assumption 2.1 ensure uniform asymptotic stability of � = 0 of system (1.5) in 
the whole, when  �� = ��.  Conditions (3) (b) is a requirement for the qualitative properties of the vector – 
function f on  ��  ×   �� . 

 
Assumption 2.2. If there exist the following conditions: 
 
(1)  A decreasing positive define on  ��  ×   ��  and radically unbounded in y uniformly relatively  � ∈  ��  

for  �� = ��  function  �(�, �, �) ∈  �(�,�)   (� ×  ��  ×  �� , �� )  

(Or �(�, �) ∈  �(�,�)   (� ×  ��� , �� ) decreasing and positive definite on �� and radically unbounded for  

�� = �� ; 
 
(2)  Non – negative numbers  ��, �� ,��,  ��    ( ��   < 1,  ��   < 1)  and an integer � > 1; 
 
(3) Positive definite functions � ∈  ∁ (��, ��) and � ∈  ∁ (��, ��) ��  ��  ���     ��  respectively and the 
following conditions are satisfied 
 
(a). ��

T  �(�, �, �, 0) ≤  −�(�)��� ���(�, �, �) ∈ � × ��  ×  �� �� (��� ��� (�, �, �) ∈  � × ��  ×  �� ×  

��� )   respectively; 

 
(b)  ��

T [�(�, �, �, �) − �(�, �, �, 0)] ≤  � ��, �
��(�) + ��   �(�) ⊬ (�, �, �, �) ∈ � ×  ��  ×  �� ×   ℳ  or 

( ⊬ (�, �, �, �) ∈ � ×  ��  ×  ��� ×   ℳ)   respectively; 
 
(c)  �� + ��

� �(�, �, �, �) ≤  ��, �(�) + ��  �(�) ⊬ (�, �, �, �) ∈ � ×  ��  ×  �� ×   ℳ  

 or ( ⊬ (�, �, �, �) ∈ � ×  ��  ×  ��� ×   ℳ)   respectively. 
 
The constants ��, �� ,��, ��� ��, mentioned in Assumption 2.1, 2.2 must be taken as small as possible. If the 
function V does not depend on x, then it is said to be positive definite on ��  only. If, in addition ��  is time 
invariant, the condition (c) in Assumption2.2 is omitted. 
 
Let the equations, (1.1), and (1.2) be the Lur’e - Postnikov form of system. See, [8]. 
 

��

��
=  ���� + ���� + ��Φ�

 (��),                                                                                                     (2.1) 

 
�� =  ���

�  � + ���
�  � ;  

 

�
��

��
= ���� + ���� + ��Φ�

 (��)  

 
�� =  ���

�  � + ���
�  � .                                                                                                                       (2.2) 

 
The matrices �(. ) and vectors C(. ) and q(. ) are of the appropriate dimensions. The nonlinearityΦ� , � = 1,2 
are continuous, Φ�(0) = 0 , and in Lur’e  sector  [0, ��], �� ∈ (0, +∞) satistfy the conditions.   
 

 
Φ���

(��)

��
∈ [0, ��], � = 1,2; for all �� ∈ (−∞, +∞) 

 
The nonlinearities  Φ� are considered incidentally, for which the state � = 0, � = 0 is the only equilibrium 
state of the degenerate system 
 

  
��

��
= ���� + ����(��

°), ��
° = ���

� �.                                                                                                 (2.3) 
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And  the  system, describing the boundary layer respectively  
 

��

��
= ���� + ��Φ�(��

°),   ��
° = ����

�  . 

 
This assumption is valid if 
 

���
� ���

��  �� > 0, � = 1,2  
 
We suppose the matrix ��� is stable, the pair (���,��) is controlled and there exist numbers Ψ� ∈ [0, +∞] 
and �� ∈ (0, +∞) such that  
 

 ��
�� + ��(1 + �Ψ��)���

� (��� − ����)���� − ����
�(���

� + ����)��(��� − ����)���� ≥

0   for all � �[0, +∞].  
 
Then, 
 

 �(�) = (����� + Ψ� ∫ Φ�
��

°

�
(��

°)���
°)

�

�  

 
is the Liapanov’s  function  for degenerate system (2.3)  for any Φ� taking the values in [0, ��], where �� is a 
solution of the equations. 

 

 ���
� �� + ����� + ����

� = −����, ℎ� + ���� = −����                                                                (2.4) 

 
For, 
 

 � = ��
�� − ��,���

� ��, ℎ� =
�

�
(Ψ�

���
� ��� + ���).                                                                             (2.5) 

 
Now we shall verify the conditions of Assumptions 2.1 and 2 .2. 
 
The verification of conditions of Assumption 2.1: 
 
Let �� and �(�) be defined as above. Hence, the function �(�) is decreasing positive definite on ��  and 
radically unbounded. We shall check up the condition (3) (a) first 
 
(a) in the case �� = 0 and 
 

 ��
�(�)  �(�, 0,0) ≤ −

�

�
����

�� ∥ � ∥  ∀(� ≠ 0) ∈ ��,  

 
Where, 
 

 �� = �
�

�(�� +
�

�
 (Ψ�

��������
� ) and �(°) is a maximal Eigen value of matrix(°). Hence  

 �(�) = ��  ∥ � ∥  , �� =
�

�
����

�� . 

 
And 
 
�� + ��

��(�, 0,0) ≤ −�(�)∀(� ≠ 0) ∈ ��, and besides, 
 �� = ��, ��� = {�:� ≠ 0, � ∈ ��} ;   
 
(b) For the function �(�) we have: 
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 ��
�[�(�, �, �) −   �(�, 0,0)] =

�

�
�(�)�� �2�� + ��,

�����
°�

��
° ������

� � ×  ����� + ��[��(�) − ��(��
°)]�  ≤

��,�(�) + ��,((Ψ�
 (�), ∀� ∈  ���   , ∀ � ∈ ��  ∀ � ∈ (0,1). 

 
Incidentally, 
 
�(�) = ��‖�‖,   ��, = ��(���� )��  ��‖��‖ ‖���‖ And 

��, = (����)��  ��[��‖���‖ ‖��‖ + ‖���‖)  �� = �
�

�(��), where �(°)  is a minimal eigen value of matrix 
(°). The value��  > 0 will be defined below.  
 
The numbers  �� and ��  and the function �, � and � satisfy the conditions of Assumptions 2.1. 
 
The verification of the conditions of Assumption 2.2: 
 
We take the function V(�) = ‖�‖ as the auxiliary function. This choice shows the alternative to the choice 
of the liapanov functions. The function V is decreasing positive definite in �� and radically unbounded. In 
order to verify condition (3)(a) of Assumption 2.2, we present the system of the boundary layer in the form 
suggested by Rosenbrok 
 

��

��
= ���(∝�)�.  

 
Where,  

���(∝�) = ��� +∝� (��
°)�����

� ,  ∝� (��
°) =

�(��
°)

��
°  . 

 
The matrix ���(∝�) = ���

� (∝�) + ���(∝�)  is negative definite for each (�, ��) ∈ �  �  �� ([0, ��]) if and 
only if ���(0) and ���(�) are negative definite. Assumption 2.2 is fulfilled.  
 
At least �(�) = ��(�) and ��

��(∝, �, �, 0) ≤ −�(�) ∀(� ≠ 0) ∈ ��  ensure the satisfaction of condition 

(3) (a) for condition (3) (a) we have 
 

 ��
�[�(∝, �, �, , �) − �(∝, �, �, 0) ] =

�

 �
��{����� + ��[��(��) − ��(��

°)]  ∀(� ≠ 0) ∈ ��.  

 
If we let,  
 
�� = 2���� Suppose‖��� +∝ �����

� ‖,  
 �� = ��‖�����

� ‖��
�� .  

 
We assume that  �� < 1, then 
 
 ��

�[�(∝, �, �, �) − �(∝, �, 0,0)] ≤ ����(�) + ���(�)  

 ∀(∝, �, �, �)  ∈   � × �� × �� × (0, ∞).  
 
This corresponds to condition (3) in Assumption 2.2 for � = 1. Checking up condition (3) (c) we taking into 
account that �∝ ≡ 0 and �� ≡ 0 and therefore, �� = 0 and �� = 0  the lower estimate of the upper bound of 
the parameter � changes and has the form 
 

 �̅ =
����,

��
  

 
Now the inequality 1 > �� + �� ensure absolute stability of the state � = (��, ��)� = 0 of system 2.1 and 
2.2 
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3 The Main Results 
 
Theorem 3.1. In order that the equilibrium state, (��, ��)� = 0, of system (1.1), (1.2) to be uniformly 
asymptotically stable, it is sufficient that conditions of assumptions 2.1 and 2.2 be satisfied for every 
� ∈ (0, �̅), and for � → 0. As soon as the inequality 
 

  1 > �� + ���̅��� + ��     
 
holds. 
 
If moreover    �� × �� = ����, then the equilibrium state is uniformly asymptotically stable in the whole 

for every � ∈  (0, ��) and for � → 0  
 
Proposition 3.1. The function V is strictly decreasing in � ∈ [��

∗ − 1, ��] along motions �[�; ��, ��, �] of 
system (1.1),(1.2) for every � ∈  (0, ��) and  for  � → 0 
 

Theorem 3.2. Let the motion (����; ��, �, ��, ��(�; ��, ��, �))� of system (1.1) and (1.2) be continuous for 

the equilibrium state (��, ��)� = 0  of system (1.1) (1.2) be uniformly asymptotically stable for every 
� ∈  (0, ��) and for  � → 0 if it is necessary that the conditions of assumption 2.1 and 2.2 be satisfied, and it 
is sufficient that 
 

(1)  The matrices ��(�) + ��
�(�) and ��(�) + ��

�(�) be conditionally positive; 
(2)  The matrix �(�) be continually negative for every � ∈ (0, ��) and for � → 0   

 
If in addition �� × ��,  = ����, then the equilibrium state (��, ��)� is uniformly asymptotically stable in 

the whole for every � ∈  (0, ��) and for  � → 0  
 

Proof of the main results 
 
Proof of theorem 3.1  
 
Let the function V be defined by the formula � = � + � then  �(�, �, �)  ∈ ��,�,�(� × ��� × ���

)  and, 

since the conditions of Assumptions 2.1 and 2.2 are satisfied. It is decreasing and positive on �� × ��. The 
Euler derivative 
 
�� (�,�(�) ,�(�),�)

��
 of it along the motion of system (1.1), (1.2),  �(�) = (��(�), ��(�))� ≠ 0, � ∈

  �0,+∞   means that the equilibrium state is reachable and therefore is not considered, due to system  
(1.1),(1.2)  is  
 

 
��

��
= �� + ��

�� + �� + ��
�� +

�

�
��

��.  

 
The right-side of this expression is transformed to the form  
 
��

��
= �� + ��

��(�, �, 0,0) + ��
�[�(�, �, �, �) − �(�, �, 0,0)] + ��

��[�, �, �, 0] +
�

�
��

��(�, �, �, 0) +  
�

�
��

�[�(�, �, �, �) − �(�, �, �, 0)].  

 
Conditions (3) (a) and condition (3) (b) of Assumption 2.1 and (3) (a) – (3) (c) of Assumption 2.2 lead to the 
estimate  
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��

��
≤ −(1 − ������ − ��)�(�) −

�

�
[1 − �� − �(�� + ��)]� (�), ∀� ∈ (0, ��)   � → 0   ∀(�, �, �) 

 ∈ � × ��� × ��� .                                                                                                                         (3.1) 
 
Let  
 

��� = ��:  � = 0, � ∈   ����,   ��� = {�:�  ∈   ���, � = 0}, �� =  ��� × ���.  
 
It is clear that 

 
 �� × ��  =  ��� × ��� × �� × {�: � = 0}  

 
Let  �� be a maximal positive number, for which the largest connected  neighborhood  ���(�)  of point  
� = 0  is such that, 

 
 �(�, �, �) ∈ [0, ��), �(�, �) ∈  ���(�) , �� ∈ �. 

 
Is a subset of the product � =  �� × �� for every � � �. The existence of the value �� > 0 is implied by 

the positive definiteness of function V on � and the time-invariance of the neighborhood of point � = 0.  

 

Let ��, ��
∗,  ��  ≤ �� < ��

∗ ≤ +∞  denote the times when �(�) ∈  
���(�)

��
   ∀ � � (��, ��

∗), �� > �� 

and  �(�)  �   �� ∀� �  [����
∗ , ��] . If   �(��) ∈   

���(��)

��
 , then  � = 0, �� = ��, [��, �∗] = [��, �∗]  is the first 

interval to be considered, and the next is  (��
∗, ��).  If  (�)  �   �� ,  � = 1, ��

∗ = ��   and    [��
∗, ��]   is the first 

interval to be considered, and the next is (��, ��
∗).  in what follows, � ≥ 0 is an integer.  

 
Let 
 
 �(�; ��, z�, �) = [��(�; ��, ��, �), ��(�; ��, ��, �)]�, � (��; ��, ��, �) ≡ ��,  
is a motion of system (1.1), (1.2) for the initial value �� and � = �� when � > 0. 
 

This complete the proof  
 
Proof of Proposition 3.1 
 
The proofs are divided into three parts;  
 
Part 1. 
 
Let there exist a time  � �� [����

∗ , ��]  when �(�, �(�), �(�)) ≤ �(�̂, �(�̂), �(�̂))  for some (����, ����
∗ )  . If  

�̂ = ����
∗  , then there exist ��̅, ��̅  �  (����, ����

∗ ), ��̅ < ��̅ such that ����, �(��), �(��)� ≤ ����, �(��), �(��)�.  

 
Due to the continuity of function V and � at �  � ⋎�, ∀ � � �, which  ensure the continuity of function f and g. 
Therefore, there exist  �� � [��̅, ��̅] when 

 

  
��

��
|�� ��

≥ 0 . 

 
However, this contradicts estimate (3.1) because of the positive definiteness of functions � and � and the 

fact that (1 − �� − ������ − ��) > 0,
�

�
[1 − �� − �(�� + ��)] > 0 ∀ �  � (0, �̂) .  
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Hence, the equality  �̂ = ����
∗  is impossible and a value  � �� (����

∗ , ��)  is to be considered. Let �� ≤ [����
∗ , ��] 

be a set of all time t such that �(�) = 0 is excluded  ∀ � � [��, +∞], then, by virtue of the continuity of the 

system of motion it should be �� = [����
∗ , ��] Then  ���, �(�)� = �(�, 0)  

 

∀ �� �� and  ���, �(�), �(�)� = ���, 0, �(�)�.  Moreover, 
 

 
�

�� 
  ���, 0, �(�)� =

� 

��
 ���, 0, �(�)� ≤ −

�

�
(1 − �� − ��)�(�(�)) 

 ∀ � �  ��, ∀ � �  (0, �̂), � → 0                                                                                                        (3.2) 
 
This contradicts the assumption that � �� ��.   now let �� =  [����

∗ , ��]  . Then (�) = 0  ∀ � �  �� . Therefore   

���, �(�), �(�)� = �(�, �(�), 0)     ∀ � �  ��,  
 

 
�

��
 �(�, �(�), 0) =

� 

��
 ���, 0, �(�)� ≤ −(1 − �� − ��) �(�(�)) )    ∀ � � �� . 

 
That contradicts the assumption that  �̂�  ��  . In general, there exist no values  � ��  [����

∗ , ��] mentioned 
above.  
 
Part 2.  
 
Inequality (3.1), (3.2), estimates of  �̅  and conditions 1 > �� + ���̅��� + ��, �� > 0  together with the 
positive definiteness of functions �  and �  proves that the function V strictly decreases on interval 
[����

∗ , ��],   ����
∗  ≥  ��,  ∀� ≥ 1  

 
Part 3.  
 
Let there exist  �  � �  [����

∗ , ��] such that  
 
�(�, �(�), �(�)) ≥ �(�̂, �(�̂), �(�̂)) for some  � � (��, ��

∗).   
 
Hence, there exist  ��̅, ��̅  ∈  (��, ��

∗), ��̅ < ��̅ such that  
 

����̅, �(��̅), �(��̅)� ≤ ����̅, �(��̅), �(��̅)�. Due to the continuity of  �(�, �(�), �(�)) therefore, there exist  

��̅  ∈    [��̅, ��̅]  is such that  
 
 

�

��
���, �(�), �(�)�|� = ��̅ ≥ 0  And this contradicts Condition                                                     (3.3) 

 
The combination of assertions of parts 1-3 proves proposition 3.1 In views of the positive definiteness of  V  
we establish according to the result part 1 the uniform stability of the state � = 0 of system (1.1), (1.2)  for  
∀ � ∈  (0, �̅) and for  � → 0. Further on, because of the positive definiteness of functions � and � and the 
fact that (1 − �� − ������ − ��) > 0  and (1 − �� − ������)  > 0  ∀�   ∈  (0, �̅)  as � → 0  and due to 

estimate of  �̅ ,   
�

��
� is proved to be smaller than a negative definite function on ��� × ���, on ��� and on  

��� . This result together with the condition of positive definiteness and decrease of function V proves 

uniform attraction in the whole of the state � = 0 of system (1.1), (1.2) and this completes the proof of the 
first assertion of the theorem. 
 
 In the case when  �� × �� = ����, the function V will be radically unbounded and this together with the 

other conditions proves the second assertion of the theorem. 
 
This theorem is applied in the absolute stability analysis of singularly perturbed Lur’e-postnikov systems. 
See [8]. 
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Proof of theorem 3.2  
 
The proof of Theorem 3.2, is similar to that of theorem 3.1, taking into account that its conditions are 
equivalent to the conditions of the theorem on uniform asymptotic stability of the authors in the literature, 
see, [19]. 
 
The theorem is proved 
 
Example 3.1. Let 
 

��� = �
0 1

−1 −2
� , �� = �

0
10��� , ��� = �−10��

0
�,  

 ��� = �, ��� = �
1
1

� , �� = 2 . 

 
And  
 

��� = 10����, ��� = �10��

0
� , �� = 1  

 ��� = �
−4 1
1 −4

� , �� = �
1
1

� , ��� = �
1
0

�. 

 
 In this example we take �� = 1 �� = 10�� so that  
 

 
�

��
+ ��(1 + ����)���

� (��� − ����)���� − ����
�(���

� + ����)��  

(��� − ����)���� ≡
�

��
> 2 . 

 
Further  
 

�� = �
0
0

� , �� = �
ℎ�� ℎ��

ℎ�� ℎ��
�  

 
is defined from the equation 
 

 �
0 −1

−1 2
� �

ℎ�� ℎ��

ℎ�� ℎ��
� + �

ℎ�� ℎ��

ℎ�� ℎ��
� �

0 1
−1 −2

� = −
�

��
�

1 0
0 1

�  

 
in the form,  
 

�� =
�

��
�

3 1
1 1

�.  

 
Hence, 
 
 �� = 0.16 and  �� = 0.45 the matrix ����(∝�) reads  

 ����(∝�) = �
−8 + 2 ∝�� 2 +∝��

2 −8
�.   

 
The matrices ���� and ����(1) are negative definite.  
 
And if �� = 0.05, �� = 1.88, �� = 0.02 and �� = 0.002. therefore 
 
�� = 0.52. Since �� + �� = 0.53 is smaller than 1, the state 
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 � = (��, ��)� = 0 Of the system defined in this example is absolutely stable for each 
 
 � � (0; ��), That ��(0; 0. ∝�) on ��(<), ≤ [0, �], � = ����(2,1) 
 
The advantage of the separation of the time-scales in this example is that order of the system in question is 
diminished. Namely, instead of the system of the fourth order, we investigate two systems of the second 
order and verify the inequality 1 > �� + ��. Moreover, the lowering of the order of the systems simplifies the 
construction of the Liapanov’s functions. 
 

4 Conclusion 
 
It is a known fact that Singular Perturbation technique which was made known by L. Prandtl in the 1904’s 
has attracted wide attention since his original work. This study investigated Singular Perturbation of the 
form (1.1) and (1.2) and used Liapunov’s direct (second) method to establish   necessary and sufficient 
conditions that guaranteed the uniform asymptotical stable state and absolute stability of the systems (1.1) 
and (1.2). The results obtained in this study improve upon on the literature as in the case of authors in [16] 
and [12]. 
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