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Abstract

Aims/Objectives: The Helmholtz equation is a partial differential equation which is used in
numerical weather prediction. Angwenyi et. al., used a five point finite difference stencil in
discretizing the partial differential equation and solved the resulting square system of equations
using eight iterative methods and concluded that the BICGSTAB was the most computationally
efficient using just one example. However, based on a comparison of the norm of the residual
and CPU time of four methods presented in this work on the same example in their paper and
others; we not only discovered that the Gauss Seidel method out performed the BICGSTAB
contradicting the claim of the authors but also the Thomas Block Tridiagonal Algorithm (TBTA)
in the absence of round off errors.
Methodology: We compared the performance of the Gauss Seidel Method, BICGSTAB, Matlab
backslash, and the Thomas Block Tridiagonal Algorithm (TBTA) for the numerical solution of
the Helmholtz equation with different step sizes.
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Results: We discovered that in the absence of round off errors, not only did the Gauss
Seidel method but also the Thomas Block Tridiagonal Algorithm (TBTA) out performed the
BICGSTAB contradicting the claim of Angwenyi et. al.
Conclusion: We do not recommend the BICGSTAB for the solution of the linear system of
equations arising from the discretization of the Helmholtz equation as claimed by Angwenyi et
al. Rather, the Thomas Block Tridiagonal Algorithm should be used and if one is thinking of an
iterative method for the numerical solution of the Helmholtz equation, the Gauss-Seidel method
should be the method of choice rather than the BICGSTAB.

Keywords: BICGSTAB; Helmholtz equation; Norm of residual; CPU-time.

2010 Mathematics Subject Classification: 65F15; 15A18; 93B60.

1 Introduction

The Helmholtz equation is an equation that describes the propagation of wave through a medium. It
is a Partial Differential Equation (PDE) derived from the wave equation and often times called the
reduced wave equation. The Helmholtz equation has many areas of application, some of which are
in: waveguides, underwater acoustics [1], numerical weather prediction, electromagnetic radiation,
seismology, and cloaking [2]. According to [2], tremendous advancements have been made in the
area of cloaking for flexural waves in elastic plates. It arises naturally when one is looking for
mono-frequency or time-harmonic solutions to the wave equation.

Consider the 2-Dimensional wave equation

∂2U(x, y)

∂t2
= c2∆U(x, y), (1.1)

where ∆ is the 2-dimensional Laplacian operator given by ∆ = ∂2

∂x2
+ ∂2

∂y2
. The equation models

the propagation of a wave travelling through a given medium at a constant speed c. Assuming a
separable solution U(x, y, t) = ψ(x, y)V (t) which satisfies (1.1), where ψ is independent of t and V
is independent of x and y. This yields

ψ(x, y)
∂2V (t)

∂t2
= c2V (t)∆ψ(x, y),

which can be re-expressed as

1

c2V (t)

∂2V (t)

∂t2
=

1

ψ(x, y)
∆ψ(x, y).

The left hand side of the above equation is a function of only t while the right hand side is a function
of x and y. Therefore, for the equation to be equal, both functions will have to be equal to some
constant say −s2. That is;

1

c2V (t)

∂2V (t)

∂t2
=

1

ψ(x, y)
∆ψ(x, y) = −s2.

Equating the first equation to the last yields,

∂2V (t)

∂t2
+ c2s2V (t) = 0. (1.2)

The solution of (1.2) is a linear combination of sine and cosine functions with angular frequency cs
and from 1

ψ(x,y)
∆ψ(x, y) = −s2, we have

∆ψ(x, y) + s2ψ(x, y) = 0, (1.3)
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where ψ is a vector function and the quantity s = 2πf
c0

is the wave number, where f is the frequency
and c0 is a reference sound speed [1]. The solution of equation (1.3) will depend on the boundary
conditions associated with the problem and it is known as the 2-dimensional Helmholtz equation.
The wave number s, can be real or complex. When s = 0, the Helmholtz equation reduces to the
Laplace equation ∆ψ = 0. When s2 < 0, that is for s imaginary, the equation becomes the space
part of the diffusion equation. Solving the wave equation (1.1) then reduces to solving equations
(1.2) and (1.3).

Several methods have been proposed for the numerical solution of the Helmholtz equation see
[3, 4, 5, 6, 7, 8] and the references therein. As earlier mentioned, the Helmholtz equation can be
used in cloaking; which is a process of making an object invisible to electromagnetic waves. Zhang in
[2] vizualised the effect of theoretical cloaking devices have on traveling waves. He did this by using
the Gauss-Seidel method in finding numerical solution to a particular generalized version of the
Helmholtz equation. However, no comparison was made with other direct or iterative methods. In
2015, Ricardo et al.[9], defined a new Cauchy integral for domains with fractal boundary illustrating
its usage to study the jump and Dirichlet type boundary value problems in a fractal domain.
Recently, [10] considered the exterior Dirichlet problem for the heterogeneous Helmholtz equation,
i.e. the equation ∇.(E∇ψ) + s2nψ = −f where both E and n are functions of position. They
proved a new priori bounds on the solution under conditions on E,n, and the domain that ensure
nontrapping of rays. They also obtained new results about the well-posedness of such problems and
the resonances of acoustic transmission problems.

Besides this, Serkh and Rokhlin [11] observed that when the Helmholtz equation is solved using
integral equations, the solutions can be explicitly represented by a series of known Bessel functions
of noninteger order. These explicit representations lead to highly accurate and efficient numerical
algorithms for the solution of the Helmholtz equation on domains with corners. In addition,
Huangxin and Weifeng in [12] presented a First Order System Least Squares (FOSLS) method
for the Helmholtz equation at high wave number s, which leads to a Hermitian positive definite
system of equations. They also gave an error analysis to the hp-version (the mesh size h, the
approximation order p,) of the FOSLS method where the dependence on h, p, s is given explicitly
and numerical experiments are given to verify theoretical results.

Angwenyi et al. [13], solved a single example of the Helmholtz equation using eight iterative methods
viz-a-viz: Gauss-Seidel Method (GS), Jacobi Iterative Method(JI), Successive Over Relaxation
(SOR), Conjugate Gradient(CG), Bi-conjugate Gradient (BICG), Bi-Conjugate Gradient Stabilized
(BICGSTAB) see [14, 15], Quasi-Minimal Residual(QMR), and Generalized Minimal Residual
(GMRES) methods. They concluded that the BICGSTAB is the most computationally efficient.
On the contrary, we show by considering other examples that this is not the case because the Gauss-
Seidel method and the direct Thomas Block Tridiagonal Algorithm out-performs the BICGSTAB
in all numerical examples considered.

The plan of this paper is as follows: in Section 2.1, we revisit the well known five point finite
difference scheme for discretizing the Helmholtz equation. This is then followed in Section 2.4 by
a presentation on the Thomas Block Tridiagonal Algorithm (TBTA) and the computational cost.
Finally, results of numerical experiments are presented by means of tables in Section 3 after which
we conclude the paper.

2 Materials and Methods

2.1 The finite difference method

In this section, we restate the finite difference method [16] that solves the Helmholtz equation. The
finite difference method involves replacing the partial derivatives by finite difference approximations,
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thus converting the partial differential equation into a finite difference equation. The method works
by replacing the region over which the independent variables in the PDE are defined by a finite
grid of points at which the dependent variable is approximated. The partial derivatives in the
PDE at each grid point are approximated from neighbouring values by using Taylor’s theorem.
Approximating the PDE at each grid point results in an equation involving neighbouring points
as unknowns. This gives rise to a system of equations with unknowns, the number of grid points.
This system can be represented in matrix form Ax = b where A is the coefficient matrix, x is the
column vector of the unknowns and b is the constant vector.

2.2 Approximating the derivatives

If ψ is a function of x and y, then

∂ψ(x, y)

∂x
≈ ψ(x+ h, y)− ψ(x− h, y)

2h
,

∂ψ(x, y)

∂y
≈ ψ(x, y + h)− ψ(x, y − h)

2k
,

∂2ψ(x, y)

∂x2
≈ ψ(x+ h, y)− 2ψ(x, y) + ψ(x− h, y)

h2
,

∂2ψ(x, y)

∂y2
≈ ψ(x, y + h)− 2ψ(x, y) + ψ(x, y − h)

k2
,

where h and k are step sizes on the x and y axes respectively. Let i be an arbitrary point associated
with the x variable and j an arbitrary point associated with the y variable. Then using subscript
notation, the equations above become respectively:

∂ψij
∂x

≈ ψi+1,j − ψi−1,j

2h
,

∂ψij
∂y

≈ ψi,j+1 − ψi,j−1

2k
,

∂2ψij
∂x2

≈ ψi−1,j − 2ψij + ψi+1,j

h2
, (2.1)

∂2ψij
∂y2

≈ ψi,j−1 − 2ψij + ψi,j+1

k2
. (2.2)

2.3 The scheme

Let R = [a, b]× [c, d] be a rectangle in R2. Lets consider the boundary valued problem

∆ψ + s2ψ = 0 in R, ψ(x, y) = f(x, y) on ∂R. (2.3)

Approximate R with an n ×m lattice of the form (xi, yj), where n is the number of partitions on
the x- axis and m is the number of partitions on the y- axis, such that

xi = a+ (i− 1)h, h =
b− a

n− 1
, and yj = c+ (j − 1)k, k =

d− c

m− 1
.

For each given mesh point (xi, yj), approximate the Helmholtz equation using (2.1) and (2.2) to
arrive at

ψi−1,j − 2ψij + ψi+1,j

h2
+
ψi,j−1 − 2ψij + ψi,j+1

k2
+ s2ψij = 0.

Multiplying through by k2, taking r = k2

h2 , then

rψi−1,j + rψi+1,j + ψi,j−1 + ψi,j+1 + (s2k2 − 2r − 2)ψij = 0,
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and assuming h = k, it is easy to see that

ψi−1,j + ψi+1,j + ψi,j−1 + ψi,j+1 + (s2k2 − 4)ψij = 0. (2.4)

The five point formula (2.4) is the finite difference scheme for solving the Helmholtz equation (1.3)
numerically. This is applied at each mesh point (xi, yj), for i = 0, 1, · · · , n and j = 0, 1, · · · ,m.
Since the values of ψ are known on the boundaries, applying the method to the interior mesh points
gives us a square system of (n−2)(m−2) equations in (n−2)(m−2) unknowns to solve. This system
in the form Ax = b, where A is the coefficient matrix of dimension (n− 2)(m− 2)× (n− 2)(m− 2),
x is the column vector of the unknowns and b is the constant vector. Solving this system provides
the numerical solution to (1.3).

In the next section, we briefly discuss the Thomas Block Tridiagonal Algorithm for the solution of
the linear system obtained from discretizing the Helmholtz equation.

2.4 Thomas block Tridiagonal algorithm

A tridiagonal matrix is a band (a sparse matrix whose non-zero entries are confined to a diagonal
band, compromising of the leading diagonal and zero or more diagonal(s) on either side) matrix
with non-zero elements only on the leading diagonal and slots horizontally or vertically adjacent
the diagonal i. e., along the sub and super diagonals.

Unlike most elliptic PDE’s, which have the property of their coefficient matrix being tridiagonal,
the Helmholtz equation does not have this. When solving the Helmholtz equation numerically, we
arrive at a pentadiagonal coefficient matrix. There is an advantage in solving the system whose
coefficient matrix is tridiagonal; matrix storage is less consumed and system computational time is
reduced.

The Thomas Block tridiagonal algorithm can be applied in solving the sparse linear system of
equations derived from the finite difference discretization of the Helmholtz equation, to reduce the
pentadiagonal matrix A to a block tridiagonal one. The five point finite difference method generates
a block tridiagonal SPD coefficient matrix so that a block version of the tridiagonal algorithm can
be applied.

2.5 Thomas algorithm for solving block Tridiagonal systems

We consider the problem of solving a square linear system of equations, Ax = b in whichA is a large
sparse, partitioned into blocks, each block is of size N by N and is either diagonal or tridiagonal. In
practical applications, such matrices arise from a five-point finite difference discretization of partial
differential equations as in Examples 3.1, 3.2 and 3.3. This section is structured as follows, we use
a block LU-type factorization in factoring A, after which block forward and backward substitutions
are used in solving for the unknown vector-x. We present the Thomas algorithm for solving block
tridiagonal systems, and the computational cost in terms of the number of floating point operations
required. The material in this section can be found in [18, pp. 58-61], [19, pp. 121-122] and [17].

Let A be partitioned as

A =



B1 C1

A2 B2 C2

A3 B3 C3

. . .
. . .

. . .

AN−1 BN−1 CN−1

AN BN


, (2.5)
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where the Ak,Bk,Ck’s are of size N by N . Note that the Ak,Bk,Ck’s do not have to be equal.
The unknown vector x and corresponding right hand side is partitioned as

x =


x1

x2

x3

...
xN

 , and b =


b1

b2

b3

...
bN

 , (2.6)

where each xk and bk are in RN . We factor A into a block LU type factorization of the form

A = LU =



Γ1

Θ2 Γ2

Θ3 Γ3

. . .
. . .

ΘN−1 ΓN−1

ΘN ΓN





I ∆1

I ∆2

I ∆3

. . .
. . .

I ∆N−1

I


, (2.7)

where I is the N by N identity matrix, Θk, ∆k and Γk are square matrices. The ’L’ and ’U’ factors
are block bidiagonal and the above factorization is not unique. This is because, we can also factor
A as

A =



I
∆1 I

∆2 I

. . .
. . .

∆N−2 I
∆N−1 I





Γ1 Θ2

Γ2 Θ3

Γ3 Θ4

. . .
. . .

ΓN−1 ΘN

ΓN


.

After expanding the right hand side of (2.7) and comparing with the entries ofA in (2.5) blockwisely,
we obtain

Θk = Ak, for k = 2, 3, . . . , N,

Γ1 = B1, and Γ1∆1 = C1,

and the following recurrence Γk∆k = Ck, where

Γk = Bk −Ak∆k−1,

for k = 2, 3, . . . N . We first solve for ∆k, use the previous ∆k−1 and then substitute into Γk =
Bk−Ak∆k−1 to get the Γk’s. This completes the block LU factorization of A. The system Ax = b
now reduces to solving

Ly = b, and Ux = y,

for y and x respectively. Now, using the L factor in (2.6), we can rewrite Ly = b as

Ly =



Γ1

A2 Γ2

A3 Γ3

. . .
. . .

AN−1 ΓN−1

AN ΓN





y1

y2

y3

...
yN−1

yN


=



b1

b2

b3

...
bN−1

bN


.

Observe that one can solve for the yk’s, using forward substitution, beginning with Γ1y1 = b1, for
y1. Then for k = 2, 3, . . . , N , we solve for the remaining yk’s from the relation

Γkyk = bk −Akyk−1.
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We now substitute the computed values of yk into Ux = y, that is,

I ∆1

I ∆2

I ∆3

. . .
. . .

I ∆N−1

I





x1

x2

x3

...
xN−1

xN


=



y1

y2

y3

...
yN−1

yN


.

It is easily seen from the last row above that xN = yN . Using backward substitution, we obtain
the remaining xk’s from the recurrence relation

xk = yk −∆kxk+1,

for k = N − 1, N − 2, . . . , 2, 1. The above theory now leads to the following algorithm: Thomas
Algorithm (see, for example, [18] and [19]).

Input A, b and N .
Set Γ1 = B1.
Solve Γ1∆1 = C1 for ∆1.
Solve Γ1y1 = b1 for y1.
For k = 2, 3 . . . , N

Compute Γk = Bk −Ak∆k−1.
Solve Γk∆k = Ck for ∆k.
Solve Γkyk = bk −Akyk−1, for yk.

Set xN = yN .
For k = N − 1 : −1 : 1

Calculate xk = yk −∆kxk+1.

Next, we briefly describe the operation counts for the Thomas Algorithm. Note that since A has
been partitioned into N blocks in N unknowns, this means that there are n = N2 unknown vectors.
Observe that the solution of Ax = b by LU factorization costs O(N2)3 operations. Since the
product of two N by N matrices requires N3 operations [18], this implies that forward substitution
which involves (N −1) matrix-matrix multiplication at a cost of 2N3 operations and approximately
2(N2)2 total operations. Similarly, there are (N − 1) LU factorizations at 2

3
N3 operations which

amounts to approximately O(N2)2 operations. Moreover, N2 triangular solves are required at a
cost of N2 operations and ∼ O(N2)2 floating point operations. Therefore, the total floating point
operations required for Thomas block tridiagonal algorithm is approximately O(N2)2 operations.
Hence, in solving Ax = b where A is large and sparse, Thomas algorithm requires less number of
operations and storage than the direct LU.

In the example studied by [13], the domain is a unit square with grid spacing h = k = 1
n+1

, therefore

there are N = n2 = 9 unknowns, and ψ is zero on the boundary.

To write this problem using matrix notation, we must select an order for the unknowns ψij . The
classical order is to start from the bottom grid row and then move up to the next grid row. So the
above problem with N = 9 unknowns, the 9× 1 column vector for the unknowns is given by

x = [ψ11, ψ21, ψ31, ψ12, ψ22, ψ32, ψ13, ψ23, ψ33]
T .
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The coefficient matrix can be written down by considering each of the above equations. Each row
in the matrix represents the coefficients in the equation at the (i, j)th grid, for example, the first
row are the coefficients of the equation at the (1, 1) grid. We arrive at a system of the form:

a b e
c a b e

c a e
d a b e

d c a b e
d c a e

d a b
d c a b

d c a





ψ11

ψ21

ψ31

ψ12

ψ22

ψ32

ψ13

ψ23

ψ33


=



F11

F21

F31

F12

F22

F32

F13

F23

F33


.

This can be written compactly by grouping the grid rows into three; 3× 1 vectors viz:

x1 = [ψ11, ψ21, ψ31]
T , x2 = [ψ12, ψ22, ψ32]

T , x3 = [ψ13, ψ23, ψ33]
T .

In the same vein,

b1 = [F11, F21, F31]
T , b2 = [F12, F22, F32]

T , b3 = [F13, F23, F33]
T .

The 9× 9 linear system above then becomes a 3× 3 block with each block a 3× 3 matrix such that B1 C1

A2 B2 C2

A3 B3

 x1

x2

x3

 =

 b1

b2

b3

 ,
where A2 = A3 = dI, C1 = C2 = eI,

B1 = B2 = B3 =

 a b
c a b

c a

 , and I =

 1
1

1

 .
It is common for finite difference schemes in two space dimension to generate block tridiagonal
matrices.

3 Results and Discussion

In this section, we discretize some partial differential equations using the five point stencil of the
finite difference method in some defined domain. After the discretization, we obtain a linear system
of equations. We then compared the solution of the linear system of equations using the Gauss-
Seidel, BICGSTAB, Matlab Backslash and Thomas Block Tridiagonal Algorithm viz-a-viz their
norms of residual, the number of iterations it takes for convergence and CPU runtime to ascertain
which is the most computationally efficient. Throughout this section, we solved three examples
numerically each with step sizes h = k = 0.25, h = k = 0.1 and h = k = 0.05 each corresponding to
linear systems of 9× 9, 81× 81 and 400× 400 respectively.

Example 3.1.

We seek the numerical solution of the Helmholtz equation

∆ψ(x, y) + s2ψ(x, y) = Φ(x, y). (3.1)

with boundary conditions ψ(x, y) = ln[(x+ 1)2 + y2],Φ(x, y) = 1
4
(x+ y), h = k = 0.25 and s = 1.

Let the problem be solved on the unit square, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. This example was considered
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in [13], but we solve this same problem using the above step size and later reduce it to h = k = 0.1
and h = k = 0.05. First we notice that this problem is a non-homogeneous case of the Helmholtz
equation where the right hand side of the equation is not the zero vector. We apply the same
procedure used in deriving the resulting linear system of equations in Section 2.3. But in this case,
take note of the non-zero right hand side. With h = k = 0.25, we arrive at the finite difference
scheme:

ψi−1,j + ψi+1,j + ψi,j−1 + ψi,j+1 + (s2k2 − 4)ψi,j = h2Φ(xi, yj).

But Φ(x, y) = 1
4
(x+ y), therefore

(4− s2k2)ψi,j − ψi−1,j − ψi+1,j − ψi,j−1 − ψi,j+1 = −h
2

4
(xi + yj).

After substituting h = k = 0.25 and s = 1,

3.9375ψi,j − ψi−1,j − ψi+1,j − ψi,j−1 − ψi,j+1 = −0.0156(xi + yj).

The equation above is the finite difference scheme used in solving (3.1).

For want of space, if we let a = 3.9375, then

a −1 −1
−1 a −1 −1

−1 a 0 −1
−1 0 a −1 −1

−1 −1 a −1 −1
−1 −1 a 0 −1

−1 0 a −1
−1 −1 a −1

−1 −1 a





ψ11

ψ21

ψ31

ψ12

ψ22

ψ32

ψ13

ψ23

ψ33


=



0.4991
0.7992
2.5053
0.2114
−0.0156
1.4274
1.3715
1.1591
2.8962


,

where the blank spaces in the above coefficient matrix are zero entries. The above linear system
is pentadiagonal which makes the Thomas Block Tridiagonal Algorithm also suitable. As stated
earlier, we want to be sure that the conclusion reached by Angwenyi et al., [13] is true by reducing
the step size to h = k = 0.1. Hence, increasing the size of the linear system of equations from 9 by
9 above to 81 by 81. In addition, we reduced the step size to h = k = 0.05 and obtained a 400 by
400 system of equations. The results are as tabulated in Table 1.

Table 1. A comparison of the performance of the Thomas Block Tridiagonal
Algorithm, Gauss Seidel, Matlab Backslash and BICGSTAB on Example 3.1.

Size of matrix Thomas Block Gauss Seidel Matlab Backslash BICGSTAB

Norm of Residual

9 × 9 3.47e-16 3.85e-16 3.97e-16 4.45e-16

81 × 81 1.16e-15 1.07e-15 1.46e-15 1.81e-09

400 × 400 3.82e-14 4.06e-14 2.14e-14 2.76e-01

CPU TIME × 1000

9 × 9 8.0000 0.0000 20.0001 4.0001

81 × 81 4.0001 0.0000 1028.1001 4.0001

400 × 400 36.0000 16.0000 9502.8000 52.0000

As shown in Table 1 for the 9 by 9 example, a ranking of the norm of the residual from the smallest
to the largest shows that the Thomas Block Tridiagonal Algorithm (3.47 × 10−16) gave the least
followed by the Gauss Seidel method (3.85×10−16) while the BICGSTAB (4.45×10−16) method was
the largest in the absence of round off errors. Since this is the same example considered by Angwenyi
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et al. to arrive at their conclusion, this is a contradiction. In the same vein, as shown by the 81 by 81
example (row four of the table), it can be seen that the Gauss Seidel method had the smallest norm
of residual (1.07×10−15); followed by the Thomas Block Tridiagonal Algorithm (1.16×10−15) while
the acclaimed computationally efficient iterative method (albeit the BICGSTAB) had the largest
(1.81× 10−9). In the 400 by 400 example, we see that Matlab Backslash had the smallest norm of
residual (2.076× 10−14) which is followed by the TBTA (3.82× 10−14), Gauss-Seidel (4.06× 10−14)
and BICGSTAB (2.76 × 10−1). Judging by the large norm of residual, this example shows how
vague their conclusions is because the BICGSTAB did not adequately solve the large system.

Next, using CPU time as a yardstick for comparison, we observed the following respectively for
the N = 9, N = 81 and N = 400: 8, 4.0001 and 36 (TBTA), 0, 0, 16 (Gauss-Seidel) and 4.0001,
4.0001 and 52 (BICGSTAB). As the size of the system increases, the CPU time increased drastically
for Matlab Backslash. Hence, the use of Matlab Backslash is an academic exercise and should be
discouraged for the numerical solution of the Helmholtz equation. Therefore, the TBTA, Gauss
Seidel methods out-performs the BICGSTAB method both in CPU Time and norm of residual.

To further disclaim the claim of Angwenyi et al.’s, paper that the BICGSTAB is the most computa-
tionally efficient iterative method for solving the Helmholtz equation, we considered two more
examples from a different author.

Example 3.2.

We solve [2]
∆ψ + ψ = 0 in R = [0, 1]× [0, 1], h = k = 0.25 (3.2)

with boundary conditions ψ(x, y) = sin
[πx
6

]
.

Since h = k, we discretized the above PDE using the five point finite difference scheme (2.4). That
is;

(4− s2k2)ψi,j − ψi−1,j − ψi+1,j − ψi,j−1 − ψi,j+1 = 0. (3.3)

But since s = 1 and h = k = 0.25, therefore

3.9375ψi,j − ψi−1,j − ψi+1,j − ψi,j−1 − ψi,j+1 = 0. (3.4)

This reduces to



3.9375 −1 −1
−1 3.9375 −1 −1

−1 3.9375 −1
−1 3.9375 −1 −1

−1 −1 3.9375 −1 −1
−1 −1 3.9375 −1

−1 3.9375 −1
−1 −1 3.9375 −1

−1 −1 3.9375





ψ11
ψ21
ψ31
ψ12
ψ22
ψ32
ψ13
ψ23
ψ33


=



0.1305
0.2588
0.8827

0
0
0.5

0.1305
0.2588
0.8827


.

In the above linear system, the blank spaces in the coefficient matrix A are zeroes. Similarly, we
reduced the step size in this example to h = k = 0.1 and after imposing the necessary boundary
conditions, we have a linear system of 81 equations in 81 unknowns. In addition, after reducing
the step size to h = k = 0.05, a 400 by 400 system is obtained. We solved the systems numerically
using the four methods and the results are as tabulated in Table 2. The table shows that the four
methods perform in the same fashion as those in Table 1. and the explanation that follows.

Example 3.3.

Consider finding the numerical solution of the following PDE [2]{
∆ψ + ψ = 0 in R,

ψ(x, y) = − 1
x2+y2

on ∂R,
R = [0, 1]× [0, 1], with h = k = 0.25. (3.5)
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Table 2. A comparison of the performance of the Thomas Block Tridiagonal
Algorithm, Gauss Seidel, Matlab Backslash and BICGSTAB on Example 3.2.

Size of matrix Thomas Block Gauss Seidel Matlab Backslash BICGSTAB

Norm of Residual

9 × 9 1.10e-15 1.70e-15 3.90e-16 2.21e-15

81 × 81 5.40e-15 4.29e-15 3.41e-15 1.03e-08

400 × 400 1.18e-14 1.24e-14 5.84e-15 9.78e-02

CPU TIME × 1000

9 × 9 8.0010 0.0000 20.0020 4.0001

81 × 81 4.0001 0.0000 1100.1001 4.0001

400 × 400 36.0000 12.0000 9382.0000 56.0000

The above PDE is the same as that in Example 2, except for the different boundary conditions.
Hence, we obtained the same coefficient matrix but with a different right hand side

b = [−32,−4,−2.719,−4, 0,−0.8,−2.719,−0.8,−1.28]T .

Next, we reduced the step size to h = k = 0.1 and h = k = 0.05 and after imposing necessary
boundary conditions we obtained respectively linear systems of sizes: 81 by 81 and 400 by 400.

The results of solving the corresponding linear systems using the above four mentioned methods is
tabulated in Table 3.

Table 3. A comparison of the performance of the Thomas Block Tridiagonal
Algorithm, Gauss Seidel, Matlab Backslash and BICGSTAB on Example 3.3.

Size of matrix Thomas Block Gauss Seidel Matlab Backslash BICGSTAB

Norm of Residual

9 × 9 1.14e-14 4.94e-15 5.49e-15 9.94e-15

81 × 81 2.65e-12 2.59e-12 8.50e-13 5.09e-03

400 × 400 3.09e-13 2.24e-13 1.44e-13 1.93e+00

CPU TIME × 1000

9 × 9 8.0001 0.0000 20.0001 4.0001

81 × 81 6.0001 0.0000 1104.1001 4.0001

400 × 400 24.0000 16.0000 9494.8000 56.0000

Besides the Matlab Backslash which was for academic purpose albeit it takes a long CPU time, for
the (81 by 81 and 400 by 400) systems, Table 3. clearly shows that both TBTA (2.65× 10−12 and
3.09×10−13) and Gauss-Seidel method (2.59×10−12 and 2.24×10−13) out-performs the BICGSTAB
(5.09× 10−3 and 1.93× 1000).

4 Conclusions

Since practical problems give rise to much bigger matrix systems, and from the results in this work,
it is unsafe to recommend the BICGSTAB for the solution of the linear system of equations arising
from the discretization of the Helmholtz equation as claimed by Angwenyi et al. Rather, the Thomas
Block Tridiagonal Algorithm should be used and if one is thinking of an iterative method for the
numerical solution of the Helmholtz equation, the Gauss-Seidel method should be the method of
choice rather than the BICGSTAB.
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