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Abstract
The time scale of the global navigation satellite system (GNSS) is the core element for its
position, navigation and timing services. A highly stable atomic clock is essential to ensure the
reliability of the GNSS time scale. This study proposed a novel hybrid denoising model
combining variational mode decomposition (VMD), K–L divergence, permutation entropy (PE),
and Savitzky–Golay (SG) filter for satellite atomic clocks. Firstly, the key parameter of VMD is
solved efficiently by taking the minimum sum of K–L divergence of decomposed modes as the
constraint condition, and the optimised parameters are applied to the decomposition process. On
this basis, the PE algorithm is used to determine the modes decomposed by VMD into
signal-dominant and noise-dominant components by searching for the mutation of PE value at
two adjacent points. Finally, the noise-dominant components are denoised by the SG filter and
then reconstructed with the signal-dominant components to form the denoised signal. The
analysis of the simulated signal shows that the method can effectively remove noise from the
simulated signal, and the resulting denoised signal is similar to the pure signal. Compared with
commonly used ensemble empirical mode decomposition and wavelet denoising methods, the
signal-noise ratio of the proposed method is improved by 21.2% and 28.9%, and the root mean
square error is improved by 24.1% and 29.8%, respectively. The results of experimental data
testify that the K–L VMD-PE-SG-based denoising method can significantly reduce the
dominant noise within one day, thus effectively improving the short to medium-term frequency
stability. Compared with the original signal, the stability of the smoothing time within 76 800 s
is generally improved, and the degree of improvement depends on the type of atomic clock and
the smoothing time.
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1. Introduction

Global navigation satellite system (GNSS) is a high-precision
time synchronization system that requires a stable time scale
along with high-precision atomic clock technology to realise
navigation and time services [1]. However, because satellite
atomic clocks operate in a complex environment, their signals
often contain trend, multiple periodic and noise components.
Among them, irregular noise is the main factor acting on the
stability of an atomic clock, which would affect the extrac-
tion of the periodic term of a satellite atomic clock and would
ultimately be detrimental to the generation and maintenance
of a GNSS time scale [2]. Therefore, many signal-processing
techniques have been applied to the data analysis of satellite
atomic clocks, focusing on noise processing [3, 4].

In the common methods, the wavelet transform could be
used to visualize signals in the time and frequency domain
even with non-stationary signals, but these methods assume
a stable signal exists in the wavelet window, and the choice of
the wavelet basis is difficult to determine [5]. Kalman filter-
ing has been widely used in clock signal denoising and state
estimation, but it is still challenging to decompose the signal
intuitively with a complex mathematical model [6]. Therefore,
the empirical mode decomposition (EMD) proposed by Dr
Huang and its derivative model have been gradually applied
to atomic clock signal processing [5]. Zhu used ensemble
empirical mode decomposition (EEMD) to denoise the fre-
quency data of an atomic clock and achieved better denois-
ing results than wavelet methods did [7]. Song used wavelet
multiscale threshold denoising, thus achieving a stable time
scale [8]. Mostafa used EMD to extract the stochastic com-
ponents and successively improved the short-term stability of
individual clocks and time scales [9]. However, EMD and its
improvedmethods involve recursivemode decomposition, and
their errors will gradually accumulate during the decompos-
ition process. Many scholars have made improvements but
failed to fundamentally solve the problems of pattern confu-
sion and the effects on the endpoint [10, 11].

Dragomiretskiy and Zosso proposed the concept of vari-
ational mode decomposition (VMD) in 2014, transforming the
signal decomposition into an optimization problem for con-
strained models by introducing a variational model to avoid
endpoint effects, suppressing modal confusion and achieving
higher decomposition efficiency [12]. It should be noted that
VMD is obviously affected by the number of decompositions
K and the penalty factor α. Optimization of the main para-
meters of VMD by use of a genetic algorithm and particle
swarm optimization has been proposed in some studies, but
processing time series with hundreds of points usually takes
more than half an hour, which is difficult to accept in satel-
lite navigation with high requirements for real-time [13, 14].
In addition, when using VMD, the first mode was often taken
simply as the reconstructed signal. Thus the useful information
contained in the other components would be ignored [15, 16].

In order to effectively denoise a satellite atomic clock
signal and realise high-frequency stability, this study pro-
poses a K–L VMD-Permutation entropy-Savitzky–Golay fil-
ter (K–L VMD-PE-SG)-based denoising method. The fast

parameter optimization of VMD parameters is realised by
taking the minimum sum of K–L divergence of decomposed
modes as the constraint condition. The paper introduced the
PE algorithm to identify the mode obtained by VMD by
determining the noise and signal components. The noise-
dominated part was denoised by the SG filter method and then
accumulated with the signal-dominated part to realise signal
reconstruction. The simulated signal and experimental data
of a GNSS atomic clock were analysed, respectively, and the
effectiveness and practicability were verified by comparison
with the EEMD and wavelet denoising methods.

The remainder of this study is arranged as follows.
Section 2 introduces the model and noise characteristic of
the satellite atomic clock and analyses the possible impact of
noise components. Section 3 introduces the theoretical back-
ground, while section 4 focuses on describing the proposed K–
L VMD-PE-SG-based data denoising method in this paper. In
addition, section 5 applies the simulation signal the proposed
method for decomposition and noise reduction and compared
with the EEMD and wavelet denoising methods. After that, in
section 6, based on the measured data of the BeiDou (BDS)
and global navigation satellite system (GLONASS) satellite
atomic clocks, the effectiveness of the proposed method is
proved. Ultimately, section 7 gives the conclusion of this
study.

2. Satellite atomic clock model and characteristic

The atomic clock model usually contains three parameters
[17]:

(a) Initial clock offset a0, which represents the clock differ-
ence at time t0;

(b) Initial frequency offset a1, which represents the relative
frequency deviation at time t0;

(c) The frequency drift a2, which represents the linear change
of relative frequency deviation.

An atomic clock system can be considered as a numerical
integrator that requires the three parameters mentioned above
to form the oscillator. In terms of self-characterization and
influence of the working environment, the stochastic differ-
ential equation of a satellite atomic clock could be generally
expressed as:

∆t(t) = a0 + a1t+
1
2
a2t

2 +
A

2πf0
sin(2πf0 +φ) |t0

+σ1W1(t)+σ2

ˆ t

0
W2(s)ds+σε(t) (1)

where a0, a1, a2 could be regarded as constant values in a short
period; A

2πf0
sin(2πf0 +φ) |t0 expressed the periodic compon-

ent in the phase caused by the orbital motion of the satellites,
which is usually bound by certain rules, especially for themain
cycles; two independent Vener processesW1(t),W2(t) usually
represent white frequency modulation (WFM) noise and ran-
dom walk frequency modulation noise (RWFM), respectively,
and their corresponding diffusion coefficients of σ1 and σ2 are
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used to represent the noise intensity; σε(t) is the observation
noise.

In the time domain, the square root of Allan variance, that
is, Allan deviation (ADEV), is commonly used to character-
ize the frequency stability. The relationship between diffusion
coefficients and Allan variance has been derived in [17]:

σ2
y (τ) = σ2

1/τ +
1
3
σ2
2τ (2)

where σ2
y (τ) represents the value of Allan variance when

the smoothing time is τ . Correspondingly, the relationship
between white phase modulation (WPM) noise, frequency
drift, the period term and Allan variance could be derived in
turn as follows [18–20]:

σ2
y (τ) = 3σ2τ 2 (3)

σ2
y (τ) =

1
2
d2τ 2 (4)

σ2
y (τ) = A2 sin

4(πf0τ)

(πf0τ)
2 . (5)

Combining the above factors, the Allan variance of the time
deviation shown in formula (1) could be expressed as:

σ2
y (τ) = 3σ2/τ 2 +σ2

1/τ +
1
3
σ2
2τ +

1
2
d2τ 2 +A2 sin

4(πf0τ)

(πf0τ)
2

(6)

where the first term on the right of formula (6) is WPM, the
second term is WFM, and both are the main factors affecting
short-term stability, with slopes of −2 and −1, respectively.
The third term is RWFM, and the fourth term is frequency
drift, which would mainly affect the atomic clock’s long-term
stability with a slow process of change. As the periodic fluc-
tuation, the fifth term would cause the stability curve to bulge
in a certain period. The first two relatively large factors would
reduce a of a clock’s short-term stability, an incorrect judg-
ment of periodic items and an inaccurate satellite time scale.
Therefore, the noise of an atomic clock should be eliminated,
and the point is the frequency signal.

3. Theoretical background

3.1. Variational mode decomposition

VMD transmits the acquisition process of signal compon-
ents and uses a non-recursive processing strategy to achieve
the central frequency and bandwidth limitation to obtain the
effective components and modal functions corresponding to
each centre frequency in the frequency domain. In recent
years, VMD has been used to solve many engineering prob-
lems, such as gravimeter signal denoising, vibration and shock
signal analysis, mechanical fault diagnosis and et al, because
of its ability to mine complex signal features.

The decomposition process of VMD mainly includes the
construction and the solution of the variational problem, with
two main constraints: (a) the sum of the bandwidth of the

centre frequencies of each modal component is the minimum;
(b) the sum of all modal components is equal to the original
signal. The original signal could be decomposed into indi-
vidual intrinsic mode functions (IMF) components, which are
defined as an AM-FM (amplitude–frequency modulation) sig-
nal. The expression of the first IMF is:

uk(t) = Ak(t)cos[ϕk(t)], k ∈ {1, . . . ,K} (7)

where the phase ϕk(t) is a non-decreasing function, and
ϕ ′
k(t) is not less than 0, Ak(t) is the envelope function and

slowly variable compared to the phase. The bandwidth of each
IMF component can be estimated according to the Carson
criterion:

BWAM−FM = 2(∆f+ fFM + fAM) (8)

where ∆f represents the maximum deviation of the instantan-
eous frequency from the centre, fFM represents the offset rate
of the instantaneous frequency, and fAM represents the highest
frequency of the envelope function Ak(t). Under the constraint
that the sum of each component is equal to the input signal,
and the sum of the estimated bandwidth of each component
is minimized. After transformation, the following constraint
variational model is constructed by formula (9):

min
{uk},{ωk}

{∑
||∂t

[(
δ(t)+

j
πt

)
uk(t)

]
e−jωkt||22

}
s.t.

∑
k

uk = x (9)

where {uk} represents the decomposed IMF component, {ωk}
represents the central frequency corresponding to the IMF
component, (δ(t)+ j/πt)uk(t) represents the one-side spec-
trum of the IMF component obtained by the Hilbert trans-
formation, and x is the original input signal. To solve this con-
strained variational model, a constrained variational problem
is transformed into an unconstrained variational problem by
introducing a second-order penalty factor and a Lagrangemul-
tiplier term with the formula (10).

Table 1. Principle of VMD algorithm.

Algorithm. Complete optimization of VMD.

Initialize
{
û1k
}
,
{
ω1
k

}
, λ̂1,n← 0

Repeat n← n+ 1
for k= 1 : K do
Updata ûk for all ω ⩾ 0:

ûn+1
k (ω)←

f̂(ω)−
∑
i<k

ûn+1
i (ω)−

∑
i>k

ûni (ω)+
λ̂n(ω)

2

1+2α(ω−ωn
k )

2

Updata ωk:

ωn+1
k ←

∞́

0
ω|ûn+1

k (ω)|2dω
∞́

0
|ûn+1

k (ω)|2dω
end for
Dual ascent for all ω ⩾ 0:
λ̂n+1(ω)← λ̂n(ω)+ τ( f̂(ω)−

∑
k
ûn+1
k (ω))

until convergence:
∑
k

∣∣∣∣ûn+1
k − ûnk

∣∣∣∣2
2
/| |ûnk | |22 < ε.
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The point of the variational problem above is to update
through alternation un+1

k , ωn+1
k and λn+1, this process is lis-

ted in the above algorithm,

L({uk},{ωk},λ) = α
∑

k
||∂t

[
(δ(t)+

j
πt
uk(t)

]
e−jωkt||22

+ || f(t)−
∑
k

uk(t)||22

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉
. (10)

According to the process of VMD and the correlation ana-
lysis in [6–8], when K is selected appropriately, VMD decom-
poses the frequency components contained in the original sig-
nal very well, but an improper selection of K will lead to
under or over decomposition. Similarly, some frequency sig-
nals would be in the under-decomposed state or be incorrectly
decomposed. When α is too small, the central frequency of
each component is more accurate than if α is too large, but the
number of iterations completed by decomposition increases
rapidly. Therefore, it is necessary to design a method to accur-
ately select K and α.

3.2. K–L divergence

K–L divergence, also known as relative entropy, could be used
to determine the degree of likelihood of the occurrence of two
probability distributions, equivalent to the information entropy
difference of the two probability distributions, which is shown
as formula (11), where p(xi) is the probability distribution of
the real data, and q(xi) is the theoretical probability distribu-
tion. The relative entropy of the two groups of data close to
each other is small, and that of the two groups of scattered
data are large. This method could use a more superficial and
approximate distribution to substitute for the observed data or
too complex a distribution,

DKL(p||q) =
N∑
i=1

p(xi) · (logp(xi)− logq(xi)). (11)

The K–L divergence of each mode of VMD is iteratively
summed in an ergodic manner, and the optimal K and α are
obtained while the sum value is the smallest. For specific
implementation, the initial value of α was given as 2000 For
example, the initial value of the modal K was set as 2, with
a maximum value of 20 and the step size of 1. In this case,
K was obtained corresponding to the minimum value of the
sum of K–L divergence, and then the α could be determined
accordingly. This method is easy to execute requires less com-
putational time, is more convenient in code writing and data
processing with simple operation logic, and has been designed
for near real-time processing of satellite atomic clock signals.

3.3. Permutation entropy

The PE algorithm could reflect system complexity and be
used to detect time series random term mutations with strong
robustness; PE algorithms have been widely used in nonlinear

data processing and analysis [21]. To solve the PE of the i
mode component, IMFi(t) of length N is reconstructed in m
dimensional phase space to generate the IMF of K×m:

IMF

=


IMFi(1) IMFi (1+ τ) . . . IMFi(1+(m− 1)τ)

IMFi(2) IMFi (2+ τ) . . . IMFi(2+(m− 1)τ)
...

...
...

...
IMFi(K) IMFi (K+ τ) . . . IMFi(K+(m− 1)τ)


(12)

where each row of IMF is a reconstruction component, m is
the dimension number, τ is the delay time, and K is equal to
N− (m− 1)τ as well as no bigger thanm!. Then, a set of sym-
bols could be obtained for each row vector of the reconstructed
matrix, which could be expressed as follows:

S(l) = {j1, j2, . . . , jm} , l= 1,2, . . . ,K. (13)

The number of the symbolic sequence occurrence of each
S(l) is counted. Then, the probability Pl is calculated by divid-
ing S(l) by m!. The probability of occurrence of each symbol
sequence is calculated as P1, P2, …, Pl. The PE of the modal
component IMFi(n) can be expressed with the standard in the
form of Shannon entropy as follows:

PEi =−
K∑
l=1

Pl ln(Pl). (14)

Finally, the PE value of every IMF needs to be normalized
based on the maximum PE of modal components. The entropy
value indicates the degree of randomness, where a small value
corresponds to simple and regular time series, and a large value
represents complex and random time series. Thus, PE is intro-
duced to qualitatively analyse the signal-dominant component
and the noise-dominant component in the clock signal.

3.4. Savitzky–Golay (SG) filter

SG filter, a method proposed by Savitzky and Golay to elim-
inate noise based on a polynomial fit on the time domain, has
been widely applied in denoising signals containing various
irregular noises [22]. The main feature of this method is that
the shape and width of the denoised signal remain unchanged.
Thus effectively retaining the change information of the signal,
which is vital for a satellite atomic clock’s signal. The filtering
is realised by formula (15):

min
m∑

j=−m

(Yj− yj)
2, s.t.YI = c0 + c1i+ c2i+ . . .+ cpi

p.

(15)

4. Framework of a K–L VMD-PE-SG-based model

The present study proposed a VMD-PE-SG model based
on K–L divergence to denoise the satellite atomic clock’s
signal. The framework of the presented denoising method
is illustrated in figure 1. Firstly, VMD was applied to
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Figure 1. The flow chart of K–L VMD-PE-SG denoising for satellite atomic clock.

perform preliminary processing and decomposition of the
measurement data of the satellite atomic clock. Secondly, the
noise characteristics were determined according to the PE val-
ues of each decompositionmode, and the signal reconstruction
was completed under SG filtering. Finally, the characteristics
of the reconstructed signals were analysed, and the effective-
ness of the method was verified. Based on the constraint of
K–L divergence, the main parameters suitable for the VMD
could be obtained. The optimised VMD decomposes the satel-
lite clock signal with complex variation characteristics into a
subseries with simple variation characteristics. The PE was
introduced to help determine signal- or noise-dominated sub-
sequences, and then the SG filter was used to process the noise
components to avoid the loss of useful information. Finally,
the denoised signal was reconstructed from the processed sub-
sequences, and its impact was analysed. The specific steps of
the algorithm can be expressed as figure 1.

Step 1: Perform the necessary processing of the satellite
atomic clock data, including outlier detection and elimination
based on the median value. Because the clock frequency bits
are more effective than the phase, the satellite clock offset data
is converted to the average frequency.

Step 2: Take the K–L divergence as the constraint con-
dition. K and α are the optimal decomposition values at the
minimum K–L sum value. Then the satellite clock’s signal is
decomposed by VMD.

Step 3: Calculate the PE value of each IMF, the signal- and
noise-dominated IMF are distinguished by the mutation point
of PE of two adjacent IMF.

Step 4: Denoise the noise-dominated IMF by SG filter.
Step 5:Accumulate the signal-dominated IMF and the pro-

cessed noise component to obtain the denoised signal.

5. Simulation

5.1. Simulation signal generation and time-frequency
characteristic analysis



y1(t) = 6× 10−14 × sin(πt/43200+π/5)

y2(t) = 1× 10−13 × cos(πt/14400+ sin(πt/86400))

y3(t) = 1× 10−13 × (1+ 0.3× cos(πt/10800)).∗ sin(πt/8640)

y4(t) = 1× 10−13 ×wgn(length(t),1,0)

Pure signal= y1(t)+ y2(t)++y3(t)

Mixed signal= y1(t)+ y2(t)++y3(t)+ y4(t)

.

(16)

The signal generated by a satellite atomic clock in space
is very complex showing nonlinear and non-stationary char-
acteristics. A frequency signal similar to the characteristics
of the satellite atomic clock was modulated to verify the
effectiveness of the proposed method. For a short-term atomic
clock signal, let us assume that the deterministic components,
including y0 and d, are constants and not a key consideration.
Thus, the simulation signal consists of sinusoidal signal y1(t)
with a cycle of 86 400 s (24 h), frequency modulation sig-
nal y2(t) with the main cycle of 28 800 s (8 h), amplitude

5
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Figure 2. Time-frequency waveform of each sub-signal in the
simulation signal.

Figure 3. Time-frequency waveform of the pure and the mixed
signal.

modulation signal y3(t) with the main cycle of 21 600 s (6 h),
random noise y4(t)with an amplitude of 1× 10−13, a standard
deviation of 1 and an intensity of 0 dB.

The time range was selected by t= 0 : 300 : 1439× 300
(five days) as an example. The corresponding time-frequency
waveform of each sub-signal is shown in figure 2. This figure
shows that the characteristics of each signal are quite different.
The main periodic terms of the first three signals are apparent,
but the waveforms of noise signals are chaotic and have no
periodic characteristics. The waveforms of the pure signal and
the mixed signal are shown in figure 3. It can be seen that with
a large order of noise, the waveform of the mixed signal y4(t)
almost masks the characteristics of the pure signal, and there
are many chaotic components in the high-frequency part of the
frequency domain waveform, which makes it difficult to ana-
lyse and deal with signals.

Figure 4. Simulation signal waveform and its PE decomposed by
VMD.

5.2. Analysis of the denoising effect of the simulation signal

In order to decompose the simulation signal with noise, the
optimal values of K and α were obtained by K–L divergence,
with the result of 5 and 2120, respectively, and importantly, the
parameter optimization process took nomore than 23.38 s. The
experiment used aWindows 10 operating system, an Intel Core
i5-11300H processor and the matlab2021a computer language
for simulation. Based on the above parameters, the waveform
diagram of each component of the simulation signal decom-
posed by VMD is shown in figure 4, and the corresponding
PE values are also given.

Based on the PE of every IMF, the differences between
two adjacent modes were calculated, resulting in 0.000 904,
0.001 626, 0.000 006, and 0.000 204 sequentially. It could
be concluded that the sudden change of the PE appeared
between the second adjacent modes, which means that the
first two IMFs were signal-dominated components and the rest
were noise-dominated components. Thus, an SG filter with

6
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Figure 5. Denoising waveforms of various methods.

polynomial order 3 and data frame length 27 was applied to
the mode IMF3–IMF5 and reconstructed into a denoised sig-
nal together with the first two modes. To verify the effect-
iveness and practicability of the K–L VMD-PE-SG method,
wavelet denoising of Daubechies (db4) with good orthogonal-
ity and EEMDwere selected as a comparison, where the com-
ponents decomposed by EEMD were performed in the same
way as the proposed algorithm. The denoising waveforms of
various methods and original signal waveforms are given in
figure 5, which shows that the waveform of the signal obtained
by EEMD or wavelet denoising was improved compared with
the mixed signal but still significantly different from the pure
signal.

Some local distorted signals were generated after EEMD
denoising, and non-stationary signals existed in the waveform
of wavelet denoising, which indicated that the denoising per-
formance of these two methods needs to be improved. In con-
trast, the denoised data of the proposed algorithm contained
essentially no distortion and non-smoothed signals and was
close to a pure signal waveform. In order to quantify the effect-
iveness of different methods, the signal-noise ratio (SNR) and
root mean square (RMS) of the denoising method were calcu-
lated. The calculation method of the two indicators was calcu-
lated by formulas (17) and (18):

SNR= 10lg

n∑
i=1

x2i

n∑
i
(yi− xi)

2
(17)

RMS=

√√√√√ n∑
i=1

(xi− yi)
2

n
(18)

where xi represents pure signal and yi represents the signal pro-
cessed by different methods; the SNR and RMS indices after
denoising by different methods are shown in table 2. It can
be seen that the SNR increased (considered an improvement)

Table 2. Characteristic values of different signals.

Methods SNR (dB) RMS (×10−13)

Mixed signal 1.0971 1.0011
Wavelet 10.6259 0.3342
EEMD-PE-SG 11.3009 0.3092
The proposed method 13.6977 0.2346

Figure 6. The time domain waveforms of the VMD of the denoised
signal using the denoising method based on VMD.

and the RMS decreased after denoising, in which the denoising
ability of EEMD-PE-SG was slightly better than that of wave-
let denoising but still lower than that of the K–L VMD-
PE-SG method. In terms of indicators, the SNR of the pro-
posed method provided improved results when compared with
EEMD-PE-SG and wavelet denoising by 21.2% and 28.9%,
respectively, and RMS is improved by 24.1% and 29.8%,
respectively.

5.3. Analysis of the decomposition effect of the
reconstructed signals

VMD has a great sensitivity to noise. After the noise reduc-
tion of a simulated signal, the proposed method was used to
decompose the processed signal once more. Figure 6 shows
the time domain waveform of each decomposed component
and the corresponding spectrum diagram. Intuitively, the first
three items decomposed are roughly consistent with the effect-
ive signal of the pure signal, and the last component is stable
and regular. As a result, the proposed method can successfully
separate the single component, and the decomposition accur-
acy and effect are improved after denoising.

6. Denoising of the satellite atomic clock frequency

6.1. Experimental data

The experimental data were selected from the precise clock
offset data of BDS and GLONASS satellites released by the
GNSS Research Center of Wuhan University. The BDS-3
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Figure 7. The phase and frequency for two selected clocks.

rubidium (Rb) clock numbered C37 with good data continuity,
the most widely used clock in BDS, and a GLONASS-M cae-
sium (Cs) clock numbered R01 were applied to the analysis.
About 1440 data points acquired during five days from 4 July
to 8 July 2021, were taken, and the epoch interval was 5 min.

The selected satellite clock offset data and the correspond-
ing average frequency data are shown in figure 7. They were
processed by outliers detection based on median absolute
deviation (MAD). As shown in figure 7, the order of mag-
nitude of satellite clock phase data was quite large, so its non-
stationary characteristics were difficult to observe. After con-
version to the average frequency, it was easy to observe that
the frequency has complex variation characteristics and a large
amount of noise. Therefore, it is necessary to denoise the satel-
lite atomic clock frequency data.

6.2. Implementation of denoising

First of all, the C37 satellite atomic clock is taken as an
example to explain the denoising process step by step. Then,
the stability results of the C37 and R01 satellite atomic clocks

Figure 8. Clock signal waveform and its PE decomposed by VMD.

after denoising are given. Finally, the test phenomena are com-
prehensively discussed and analysed.

For the C37 clock, the VMD optimised by K–L divergence
was applied to decompose the selected frequency data and the
obtained four modes are shown in figure 8, whose correspond-
ing PE was given together. Based on the PE of every IMF, the
difference between two adjacent modes was calculated, res-
ulting in 0.000 887, 0.000 592, and 0.000 095 sequentially. It
could be concluded that a sudden change of the PE appeared
between the first adjacent modes, which means that the first
IMF were signal-dominated components and the rest were
noise-dominated components. Thus, the SG filter with polyno-
mial order 3 and data frame length 27 was applied to the mode
IMF2-IMF4 and reconstructed into a denoised signal together
with the first mode.

The satellite atomic clock frequency data waveform after
denoising by the K–L VMD-PE-SG method is shown in
figure 9, and the waveforms obtained by the two compar-
ison methods are also given. It can be seen that although
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Figure 9. Denoising and original waveforms of experimental data.

the signal after EEMD and wavelet denoising was relatively
regular compared with the original signal, it still showed the
same problems as the simulated signal, including the local dis-
tortion and non-stationary characteristics. In contrast, the sig-
nal denoised by the proposed method was smoother, which
could better reflect the law of frequency change.

6.3. Analysis of frequency stability

The experimental data were obtained by the ground labor-
atory, including calculating the satellite-ground comparison
data, and the pure signal of the satellite atomic clock could
not be available, so SNR and RMSE could not be used to
quantify the effectiveness of the denoising method. For this
reason, the performance of the proposed method was mainly
tested through an analysis of frequency stability. Formula (19)
was used to calculate the stability with the frequency data:

σ2
y (τ) =

1
2(M− 1)

M−1∑
i=1

(yi+1 − yi)
2 (19)

where τ is the sampling time,M is the number of the sampling
frequency, and σy(τ) is ADEV, the most commonly used
index to characterize frequency stability. The ADEV curves of
the original signal and the signals denoised by different meth-
ods for C37 are shown in figure 10. It can be seen that the
three methods could effectively improve the short-term fre-
quency stability and suppress the influence of short-term dom-
inant noise with a negative slope, and the proposedmethod had
the best effect. When the smoothing time was about 10 000 s,
due to the distortion caused by EEMD and wavelet denoising,
the frequency stability of the two signals was even worse than
that of the original signal.

The frequency stability values of different smoothing times
are summarized in table 3 to quantify the denoising effect
of relevant methods. It can be seen that the denoising effect
of the wavelet and EEMD methods is limited, and the

Figure 10. Frequency stability of C37 before and after denoising.

Table 3. Frequency stability of C37 obtained by different methods.

ADEV (×10−13)

methods

Sampling time (s)

9600 19 200 38 400 76 800

Original signal 2.56 2.16 0.764 0.908
Wavelet 2.65 2.14 0.759 0.904
EEMD-SG-PE 2.66 2.15 0.763 0.903
The proposed method 2.21 1.96 0.705 0.883

proposed method can significantly improve the stability of
each smoothing time. Specifically, in the smoothing times of
9600 s, 19 200 s, 38 400 s and 76 800 s, the frequency stabil-
ity was 13.3%, 9.3%, 7.8% and 2.8% higher than that of the
original data, respectively. It is worth noting that the denois-
ing effect for C37 decreased over time, and when the time
increased to more than one day, the stability of different mod-
els tended to be consistent, mainly because the contribution of
frequency drift to the stability, which starts to dominate and
gradually submerges the noise characteristics.

To illustrate the effectiveness of this method on different
types of GNSS satellite clocks, and further analyse the influ-
ence of frequency drift on noise removal, the GLONASS R01
Cs clockwith a tiny frequency offset was analysed. TheADEV
curves of the original signal and the signals denoised by differ-
ent methods for R01 are shown in figure 11. It can be seen that
the three methods could effectively improve the short-medium
term frequency stability and suppress the influence of short-
medium term dominant noise with a negative slope, and the
proposed method had the best effect.

The frequency stability values of different smoothing times
are summarized in table 4 to quantify the denoising effect of
each relevant method. It can be seen that the denoising effect
of wavelet and EEMD methods is limited, and the proposed
method can significantly improve the stability of each smooth-
ing time. Specifically, with the smoothing times of 9600 s,
19 200 s, 38 400 s and 76 800 s, the frequency stability was
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Figure 11. Frequency stability of R01 before and after denoising.

Table 4. Frequency stability of R01 obtained by different methods.

ADEV (×10−14)

methods

Sampling time (s)

9600 19 200 38 400 76 800

Original signal 7.351 5.532 4.214 2.803
Wavelet 7.388 5.407 3.956 2.563
EEMD-SG-PE 7.467 5.501 3.928 2.601
The proposed method 5.640 5.143 3.576 2.387

23.3%, 7.1%, 14.9%, and 14.6% higher than the original data,
respectively. Among these, the stability improvement amp-
litude was the smallest at the smoothing time of 19 200 s,
reflecting the influence of the periodic term on the stability.
The analysis results show that the proposed method is effect-
ive for Cs clocks, and its denoising effect is more significant
than that of Rb clocks, which may be due to the inconspicuous
drift characteristics.

7. Conclusion

This study analysed the influence of different components of
satellite clock offset on frequency stability, the necessity of
denoising clock difference data is expounded, and a denoising
method of satellite clock offset signal based onK–LVMD-PE-
SG is put forward. In the proposed method, K–L divergence
is specifically applied to the parameter optimization of VMD,
and PE is introduced to distinguish the noise of each subsig-
nal decomposed by VMD. In order to avoid the omission of
useful information, the first item of VMD is not directly taken
as the processed signal but reconstructed with the noise signal
filtered by the SG filter to generate the denoising signal.

The results show that the proposed K–L VMD-PE-SG-
based method achieves a better denoising effect than the
EEMD and wavelet denoising methods. Compared with
EEMD-PE-SG and wavelet denoising methods, the SNR of
the proposed method was improved by 21.2% and 28.9%, and

the RMS is improved by 24.1% and 29.8%, respectively. The
proposed denoising method fully combines the K–L diver-
gence characteristics, thus providing accurate parameters for
VMD in a short time, the useful information of satellite atomic
clock signals can be completely retained through signal iden-
tification and reconstruction. As a result, the proposed method
can significantly affect the dominant noise in the short term,
such asWFM, to effectively improve the short-term frequency
stability.

It is worth discussing that the denoising effect of the pro-
posed method varies for different types of atomic clocks,
which is mainly due to the different frequency drift charac-
teristics of those clocks. The denoising ability of the proposed
method also varies with smoothing time for the same satellite
atomic clock due to the inclusion of periodic terms and drift
components in the signal, which have time-varying effects on
the frequency stability. In addition, improving the proposed
method on the long-term frequency stability needs to be fur-
ther verified, which is an essential work being planned.

In summary, the proposed method takes only a short time
to complete the signal denoising of the clock and can give
full play to its advantages in favour of short-medium term
stability. Therefore, it has broad prospects in various applic-
ations, such as frequency and clock offset prediction atomic
time algorithms.
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