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Abstract

In this paper, digital signature that is resistant tac&it by quantum computer is designed in two versjons
— with the application and with message recovery. We studgeitwrity and performance of this digital
signature by comparing it with the signatures of R®® ®SA. In particular, it appears that the new
digital signature is not less secure, but it is much fasi@n these signatures are commonly used in
practice.

Keywords: Digital signature; matrix ring; residue ring; awmorphism.
1 Introduction

First commercial version of a quantum computer with 512 qJhjtsppeared in 2014, contrary to the
skeptics opinion. Not have long to wait until the turn oR4@ubits, the overcoming of which would

threaten the security of the existing Internet infrastmgctun particular, the implementation on this
computer of Shor's algorithms solving the integer factorizadiod discrete logarithm problems [2] will

allow the possibility to break such public key cryptosysterasthe RSA and the corresponding digital
signature and moreover the ElGamal cryptosystem and thal diginature DSA. But then the security of
the Internet infrastructure would be threatened as a semmremunication protocol OpenSSL uses
cryptographic primitives such as RSA, Diffie-Hellman key¢hange protocol and digital signature DSA [3].

There is the need to replace potentially vulnerable cgypfihic primitives with others components which
are resistant to attacks by a quantum computer. You canarféeof the possible variants of replacement:
instead RSA to use BMMC [4] or MMMCL1 [5] and instead Diffiellman key exchange protocol to use its
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non-commutative analogue on the basis of BMMC [6]. It res& replace the digital signature of DSA and
that is the aim of this paper.

Briefly describe the contents of the paper. In Section 2ndéwe modular matrix based digital signature
scheme (MMDS) with application is described. An exampleoofiputations in this digital signature scheme
is contained in Section 3. Message recovery version of th®%lM described in Section 4. The security of

the MMDS is investigated in Section 5. Comparison of tfferént digital signatures performance is made
in Section 6. Finally, a conclusion is given in Section 7

2 Modular Matrix Based Digital Signature Scheme (MMDS) Description

2.1 Key Generation

Alice should do the following:
2.1.1 Generate a random prime number p.
2.1.2 Select one of two options:
a) Generate another random prime num@e# P and computedl = PQ.

b) Generate a random integer=> 2 and computef) = pr .

2.1.3 Select two random invertible matrices, W in the Abelian subgroui [5] of the group
GL(Z,).
2.1.4 Compute the matrix
U=V7W.
2.1.5 Alice’s master public key is:
(n,U).
Alice’s master private key is:
v, W).
2.2 Digital Signature Generation

For the digital signature on the messagalice should do the following:

2.2.1 Select a random matrikin the subgrougs of the groquLz(Z n) and a random matrik in
the groupGL,(Z ) . (Let G be the following set of 2 — matrices:

G= (a bja,bDZn and(&- B)oz: !,
b a
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Z n Is an unit group of the residue rirZ;n modulon.
It is easy to verify tha® is an abelian subgroup of the grolmL,(Z ) .) [5]

2.2.2 Select random elemerni, A in the residue ringZn .
2.2.3 Alice’s session private key (§1,A,Y, L).

2.2.4 Let X, » Xwy+ Xy be the automorphisms of the matrix rifyl,(Z ) defined as the
following:

X,:D -U™DU,
Xvy - D - (VY)_I D(VY)
Xwy D - (VVY)_l [XWY)

forevery D LM 2(Zn) .

2.2.5 Alice computes matrixand bit strings as follows:

F =Nl L),
= x”.-y(l‘ )1 jvlta
8=A+p,s="h((m), | (3t),),

where(m)2 is the bit string — binary representation of the messm,géét)2 is the bit string obtained

after transferring matrixOt in the string of numbers as follows:

a, a
="' 7loalalala,
3 Ay

and replace the numbe& by their binary representationb,( X) is the hash value of the bit strirg

2.2.6 Letp.'[ be a session public key (verification key) for the veaificn of Alice’s signature of the

messagen and (r ,S) is the Alice’s signature of the message

2.3 Digital Signature Verification
To verify the Alice’s digital signature of messagé3ob should do the following:

2.3.1 Obtain Alice’s authentic master public keyly) and session public k@t .
2.3.2 Compute

v=pt+x,(r).
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2.3.3 Compute

S':h((m)g

(v),)

2.3.4 Accept Alice’s signature of the messagi and only if S = S.
Theorem MMDS verification is correct.

Proof. By verification description
V=L Xy () =pt+ AV W) (V)T LVY(VEW=p £A £(n+A) €3t
Therefore
s'=h((m), || (v),) = h((m), | (51),)=s
3MMDS Example

In this section an example of computations in MMDS witiifieially small modulus of the residue ring is
given.

3.1 Key Generation
Alice should do the following:

3.1.1 Selecth = 35.

3.1.2 Select

V,WO GO GL(Z,),

4 7 7 9
V= W= :
7 4 9 7
3.1.3 Compute

u:v-lw{o 11)
11 O

3.1.4 Alice’s master public key is

(2 3)
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Alice’s master private key is

v )

3.2 Signature Generation

Alice should do the following:

3.2.1 Select the matrices:

v=[> 3loeoeLy. L=|° °loeLe
—(3 5} L,(Z35). —[7 4} L,(Z,).

3.2.2 Select the residues
ANubZ,,,A=8,pu=11

3.2.3 Alice’s session private key is

oo {3 (2 3]

3.2.4 Compute

Loyuay (0 166 30 1
AOSTETE P L (Vi
L (33 4)(6
Yor (L) = (VY) L(vv)-[ ; 33j(7 j[lz 3 ( ]

29 3\ 6 3\ 2 3
Yo (L) = (WY) ™ (WY = [ 29j(7 4}[ 31 ZM;‘ j

3.2.5 Compute signature, §) as follows:

o (L)_86 7\ (13 21
“MWEE 3 4T 24 32
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4 3 43 (9 3
thWY(L):(? 6}"“:“{7 6}2[7 ej’

u'[ is Alice’s session public key (session verificati@yk

4 3) (6 22
S=A+u=19,dt=1 = |
7 6/ |28 9

s=h((m), | (81),)

where(m)2 is a bit string — binary representation of the mesmgéﬁt)2 is a bit string obtained after

transferring matrixOt in the string of numbers and replace the numbers by bivery representations as
follows:

06]221]28]109 — 00000110 || 00100010 || 00100100 || 00000101
3.3 Signature Verification
Bob should do the following:

0 11
3.3.1 Obtain the authentic Alice’'s master public {d&l =35,U :( 0 and session public

11
PRI
W=7 81)

3.3.2 Compute

v=pt+x, (N =ut+U™ru =
(9 33}{0 1?{ 13 23( 0 131:
7 31 16 0)\ 24 32\ 11
(9 33]_{32 ZJJ:( 6 Zj
7 31 21 13 28 9
3.3.3 SinceV = Ot , therefore

s = h((m), || (31),) = h((m), || (v),) =",

Note. In practice, Bob during signature verification usegshunction with a 256-bit hash value. If the
modulus is too small number, then apply such hash fundidifficult. Therefore, in the example with=
35 due to the inability to compute a 256-bit hash value usidigeict argument. Equality test of hash values
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produced by an indirect test for equality= ot, although Bob computes onlyvalue and does not know
the Ot value (5t value is taken from the steps of the Alice’s signatemegation).

4 M essage Recovery Version of MMDS

Since this version of MMDS provides message recovenyitabde redundancy function is required to guard
against existential forgery attack [7]. Redundancyfiom selection will be made in this version of MMDS
description. The message with bit length of more than 286alithout additional transformations can not be
signed by the MMDS with message recovery, so for thessages usually the MMDS with the application
(Section 2) is used. Therefore the message recoverjoreof MMDS will be used mainly for short
messages, i.e. for messages of bit length less thaguat ® 256 bits (for such messages can also be used
MMDS with the application). Of course, for "long" megsa with the bit length of more than 256 bits, you
can not sign the original message itself, but its hash \adue substitute for the original message using
MMDS with message recovery and it is recovered during sigaaerification.

4.1 Key Generation

Alice should do the following:

4.1.1 Select 128-bit positive integEy, .

4.1.2 Append on the left of the binary representatiofilpé single bit 1 and get a 129-bit number

4.1.3 Select matrices

V,WO GO GL(Z,)

and random uniy (1Z .
4.1.4 Compute
U=V7W.
4.1.5 Alice’s public key is

(n’ U)v

Alice’s private key is
(y,V,W).
4.2 Signature Generation

To sign a messaga with bit length of not more than 256 bits Alice should do tifing:

4.2.1 Select the redundancy function of the following form:

R(m) = ((m), ® h((m),)) || h((m),).
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4.2.2 Compute the hash valth( R( rr)) , it is a public session key (session verification key) f
Alice’s signature of the message

4.2.3 Represent 512-bit striﬁ( m) as follows:
R(m)=m, | m, || m, || m,

4.2.4 128-Dit stringdT} are replaced by their decimal representatiM§ and form a matrix

M = M, M,
M, M,
Note. Selecting the 129-bit modulusof the residue ring ensures that M, 1 =1,..., 4are residues
modulon.

4.2.5 Select the random matric¥s[ ] G and L [ GLz(Zn)-

4.2.6 ComputeL tand Y.

4.2.7 Let Xy Xyyr» Xwy be the automorphisms of the matrix rirhgﬂz(zn) defined as the
following:

X, :D - U™DU,

XVY :D - (VY)_1 D(VY)
XWY: D - (VVY)_l [XWY)

for every D [ Mz(Zn).

4.2.8 Compute Alice’s signature, §) of the messagen:
r= X (L) = VVY) T L(VY),

S=Y Xy (L) =y "M(WY) ! L WY.
4.3 Signature Verification
Bob should do the following:
4.3.1 Obtain the authentic Alice’s public master I(d?}/, U) and public session keh( R( r‘r)) .

4.3.2 Compute

z=x,(r)=U""ru.
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4.3.3 Compute

sz= M"
, (M M,
4.3.4 Let(m)zbe a bit string obtained by transferring the matvk' = ! . |in the row of
M, M,
numbers

M| M, || M, || M,
and then followed by replacement of decimM;i' by their 129-bit binary representatioﬁﬂl :
ml ” m2 " m} ” m4 = (m 1)2‘
4.3.5 Compute

h((m),) = 9.

4.3.6 Do not accept the signature if

g# h(R(m).

4.3.7 Since

h((m),) = (R ).

then with overwhelming probability it follows that

(m), = Rm.
4.3.8 Since
R(m) = ((m), ® h((m),)) | h((m),) = (m"), = left half || right half
then it follows that

left half = (m), O K(m,),
right half = h((m),).

4.3.9 Finally restore the bit strin(jn)2 by computingXOR of the left and right halvesf the bit string
(ml)z:

h((m),) T ((m, 0 () =( M,
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Theorem Signature verification is correct.

Proof. Since the matrice¥, U, V, Wbelong to the Abelian grou@, they mutually commute, and then we
have:

M'=sz=(y M(WY™ (WY V W (r V )=
=(Y M YW) T DWY(( VWY VY LYY Ve
=(VY)M W) EYW(( YW LYY= M

Note. The number$vl i' in 4.3.4, as follows from the proof of tideoremare the 128-bit numbers.
5 Attacksagainst MM DS
5.1 Key-only Attacks

In these attacks against MMDS an adversary knows only the 'signaster public ke>U :V_1Wand
his aim is to find the signer’s private k&, W) Crucial problem is the following:

5.1.1 Matrix modular factorization problem
Let A be any matrix from the grouG L2 (Z n) and consider the fixed factorization
A= XY,
X andY are unknown matrices from the grolL,(Z ) .
Find the unknown matrices, Y.

a) Scalar case

Modular factorization problem
Let abe any unit modula, &[] Z; and consider the fixed factorization

a= Xy,

x andy are unknown units from the unit gronZ):1 :

Find unknown units, y.

The principal difference of this modular factorization frdme tnteger factorization is as follows. Canonical
integer factorization (the product of powers of prime nusibis only up to invertible factors, that is which

for the ringZ of integers is +1 or -1. To the residue ring situatiofundamentally different - there are at
Ieast(l)(n) (¢ is Euler function) different modular factorizations, whizdn be obtained as follows. Lat

be any unit modulao, then select any other uitmodulon and computeC = b a(mod n), we have the

10
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modular factorizatiord = DC. We call thus obtained factorization as trivial modulatdazation and
there are at Ieas(b(n) trivial modular factorizations. Let us now compare the corigleof solving the
integer factorization and the modular factorization problems.

There are the subexponential algorithms to find the canoimiggyer factorization and is now using them
can be found a canonical factorization for 512-bit and majlee 1024-bit integer. Since there is no
canonical modular factorization and modular factorithgndistinguishable, there is no algorithm other than
an exhaustive search, to find a fixed modular factorizatidiis means that it is infeasible to find the
solution of the modular factorization problem even foatieély small modulus, namely, for example, for a
256-bit modulus and maybe the 128-bit modulus.

b) General case

Trivial modular matrix factorization is defined similato the scalar case. Again, similar to the scateec
there is no algorithm for finding solutions of the modulatrirdactorization, other than exhaustive search.

Supposem is the order of the grou@Lz(Zn) , then there are at least trivial modular matrix

factorizations ovelGLz(Zn). Note that for two special cases of the modulusamely,N = pk and
N = PAg, p, gare primesk is a positive integer, we have farthe following formulas.

Note 1. (i) In the case whepe- prime,i - an integer, we have [8]:

=p*3(p-1)'(p+1)

m,=f(p)=[on(2,,) .. Q)

P

(i) As a result of (i), in the case whepeandg are primes, we have:

2

My = £ (P4)=|GLy(Z )| = (P =1)’ (P +1)a(q=1) (4 +1) -

We now estimate how much you can reduce the bit lengtheofiodulus of residue ring, analogous to the
scalar case exhaustive search of modular matrixdaatmns it remained infeasible.

Let n be a 32-bit integer, implemented in two ways.
nn= p2, p is 16-bit prime.

According to the formula (*) in this caseis 128-bit number.
2)N = PAq, p, gare 16-bit primes.

According to the formula (**) in this casais 128-bit number.

Thus, for a 32-bit modulus for both cases of its construction, an exhaustive searchnigputationally
infeasible, and therefore the modular matrix factorizati@blpm has no solution in practice.
Let us now turn directly to the attacks on the MMDS. Theeeghry knows only the signer’s public key

U =V "W and wants to find the signer's secret ky W) For this, he is looking for the solution of a
modular matrix factorization problem. At each step ofeahaustive search the adversary must decide
whether it is right modular matrix factorization. The eribn for this decision is the answer to the question:

11
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if for any matrix L DGLZ(Zn) and Y [ Ggenerate signature on the messagevith this pair of

matrices as a secret key, whether the Alice’s public kefpr some selection of the matrixand matrixY
successfully works in the signature verification algoriti@hcourse, you can restrict a probabilistic criterion
and did not give an answer for any matrixbut only for a relatively small number of random stdecof

the matrixL. But on the other hand, when using probabilistic critara more likely to give the wrong
answer to a true factoring due to the lack of true matramong randomly selected matrices. Thus, if we
take a 32-bit amount of random matrices as the mhfrtken for the 32-bit modulus of residue ring (all
the more for larger modulus) is computationally infeasiblgnd the signer’s private key.

5.1.2 Existential forgery attack
An adversary might attempt to forge Alice’s signature lo@ messagen by selecting a random matrix
XOGL,(Z,) and computing ' = 0X INX , trying to choose unitGDZ; and matrix

N O GL,(Z,) so as to ensure the successful completion of the verificatgorithm by performing

equality V'=0t, whereV'is computed by adversary as
vi=ut+UTr'u.

Assuming that Alice wants to select the modulus of resithgeso that the problem of a modular matrix
factorization has been computationally infeasible, thetipligrs of matrix A (Alice’s session public key)

can not be known to the adversary. But not knowihandt he will have to limit ourselves to a random

selection ofO andN, therefore for the selection of the modutuas 32-bit integer the probability of success
of the existential forgery attack is negligible.

6 Comparing the Performance of MM DS and RSA, DSA Signatures

For comparing the bit complexity of generation and verificatigorithms considered in the paper digital
signature schemes let us start with the known estimatéiseobit complexity of basic operations in the
residue ring ([7], Table 2.5).

Table 2.5. Bit complexity of basic operationsin Zn

Operations Bit complexity

Modular addition (a+b)ymodn O(lg )
Modular subtraction (a—b)modn O(lg n)
Modular multiplication (ab)modn O((lgn)®)
Modular inversion a*modn O((lg n)?)
Modular exponentiation a“modn, k< n O((lg n)®)

We now find the bit complexity of modular matrix operations usezbmpared digital signature schemes.
6.1 Matrix Modular Multiplication

This operation consists of 8 modular multiplications and 4dufas additions. Considering only the
multiplications, we obtain the following estimate of the litnplexity of the matrix modular multiplication:

12
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8(lg n)2 C -bit operations for some constahit
Using parallel computations at least of 4-core pramgssovides the following estimate:
2(Ign)? C -bit operations for some constadt
For 32-bitn we obtain the following estimate:
8(32Y = 8002° = g116C -bit operations for some constadt
In parallel computing case we have approximately:
2(32f = 202° = 20016C -bit operations for some constadt
For 64-bitn we obtain the following estimate:
8(64Y = 2°= 32 2°= 3,% 10C -bit operations for some constapt
In parallel computing case we have approximately:

8x 103C -bit operations for some constaht

6.2 Matrix Modular Multiplication in the Group G

This operation consists of 4 modular multiplications and Aufas additions. Considering only the
multiplications, we obtain the following estimate of thedomplexity of the matrix modular multiplication
in the groupG:

4(lgn)? C -bit operations for some constadt
In parallel computing case we have:

(Ig n)? C -bit operations for some constadt

For 32-bitn we obtain the following estimate:

4(32Y = 402° = 4016C -bit operations for some constadt

In parallel computing case we have:

322 = 210 = 103C -bit operations for some constaht

For 64-bitn we obtain the following estimate:

4(64Y = 2*=16x 2°= 1,& 10C -bit operations for some constadt

13
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In parallel computing case we have approximately:

4x 103C -bit operations for some constahit

6.3 Modular Matrix Multiplication by a Scalar

This operation consists of 4 modular multiplications, thenol&ain the following estimate of the bit
complexity of the matrix modular multiplication by a scalar:

4(lgn)? C -bit operations for some constadt
In parallel computing case we have:
(Ig n)?*C -bit operations for some constadt
For 32-bitn we have:
4(32)Y = 402° = 40106C -bit operations.
In parallel computing case we have:
32° = 2° = 10°C -bit operations.
For 64-bitn we obtain the following estimate:
4(64Y = 4x 2?=16< 2°= 1,& 10C -bit operations for some constadt
In parallel computing case we have approximately:

4x 103C -bit operations for some constaht

6.4 Modular Matrix Multiplication by a Scalar in the Group G

Modular matrix multiplication by a scalar in the gra@gonsists of 2 modular multiplications then we have:
2(Ign)? C -bit operations.
In parallel computing case we have:
(Ig n)? C-bit operations.
For 32-bitn we have:

2(32Y = 202° = 20016C -bit operations.

14
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In parallel computing case we have:
322 = 2°= 10°C -bit operations.
For 64-bitn we have:
2(64Y = 202% = §32°= 8116C -bit operations.
In parallel computing case we have:
64 = 2* = 402° = 4x 10C -bit operations.
6.5 Matrix Modular Inversion

This operation consists of 2 modular multiplications andanddular subtraction (computation of the
determinant), modular inversion and matrix modular miidtition by a scalar, then we obtain the following
estimate of the bit complexity of the matrix modulararsion:

3(Ign)? + 4(Ign)? = 7(Ign)?* C-bit operations (modular subtraction is ignored).
In parallel computing case we have:

2(Ign)?C -bit operations (modular subtraction is ignored).
For 32-bitn we obtain the following estimate:

7(32) = 702° = 7x 1G6C -bit operations for some constadt

In parallel computing case we have:

2[B2 = 2x 13C -bit operations.

For 64-bitn we obtain the following estimate:

7(64Y = 7x 2?= 28 2°= 2,8 10C -bit operations for some constant

In parallel computing case we have approximately:
2(64Y = 2002 = g12°= & 16C -bit operations for some constadt

6.6 Matrix Modular inversion in the Group G

Recall that in grouiis matrices are of the fornn = (a bj , then we obtain:
b a

3(Ilgn)? + 2(Ign)? = 5(Ign)’ C-bit operations.

15
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In parallel computing case we have:
2(Ign)?*C - bit operations.
For 32-bitn we obtain the following estimate:

5[B2 = 5x 10C -bit operations.

In parallel computing case we have approximately:

2[B2 = 2x 10C -bit operations.

For 64-bitn we obtain the following estimate:

5(64Y = 5002° = 2002°= X 1CC -bit operations for some constadt

In parallel computing case we have approximately:

2[642 = 2D22 = & 16C- bit operations.

Now we can compare the bit complexity of the signatures gémerand verification algorithms discussed
in the paper digital signatures and used now in practice sigsattiRSA and DSA.

We first consider as a reference point the signature 8f Bfnature generation and verification in this case

consists of only modular exponentiation, then their bit derity are (Ig n)3C -bit operations. For 1024-
bit n and 1024-bit plaintext block we obtain the following restie:

1024 = (2° Y= (10 Y= 106C -bit operations for some constadt

Note. Generation of RSA signature may be faster withallgmablic exponent, but on the other hand a small
exponent contains a security threats. Moreover, sinc&8# is a signature with the message recovery, to
protect against existential forgery attack need to smee redundancy function [7], namely, using the
ISO/IEC 9796. This makes the implementation of RSA signatur@ractice cumbersome and slow
procedure.

Another reference point considers fast ciphers, nansginmetric or stream ciphers. It is known thasthe
ciphers are much faster than public-key cryptosystertpreding to some estimates, about 10000 times

faster. So there is a very roughly estimate of thedsitpiexity of fast ciphers as a ramgél.&)':]3 - 104-bit
operations. Now let's see whether the MMDS falls inréuige.

6.7 DSA

Following the description of the DSA in [9], we firshfi the bit complexity of individual parts, and then of
the full cycle of the DSA application.

16
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6.7.1 Key generation

Let p be 1024-bit prime numbeZ*p be a multiplicative group of the residue fi%p andz be a generator

of the cyclic grou;z*p. Suppose further that1 has the fornd -1=2 g. wherel is an positive integer
Pl
andq is a 160-bit prime number. Sineas of orderp-1in the grou;Z*p, the elemeniZ ¢ s of orderq
1
and therefore is a generator of the cyclic subgr@p( Z d of the orderq in the grourz*p. To

P

denoteZ ¢ by g and to choose a random 160-bit integere obtain the public keyby computing
y=g*modp

andx is the session key. Now we find the bit complexity of key getien phase.

One modular exponentiation modulo 1024-bit pripeneeds(lg p)?’C bits operations, in our case
1024'C = (10 YC = 1 C-bits operations for some constant C.
6.7.2 Signature generation
Alice does the following:
1. Computes hash valig(m).

2. Selects random 160-bit inteder
3. Computes signatufe, s), where

r =(g“*modp)modg ,s= ((h(m) xr)k* Ymodc.
One modular exponentiation modulo 1024-bit primand one modular reduction modulo 160-bit prigne

needs((Ig p)® + (Ig g)*) C= (Ig P> C-bits operations, in our case

1024C = (16 YC = 1GC-bits operations for some constat

6.7.3 Signature verification
Bob does the following:

1. Computes hash valda(m) .
2. Computes

a=h(m) s*mod g b= rs' mod ¢
3. Computes

v=(g*y"mod p)moda,

17
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4. Signature is accepted if and onlyr.

Two modular exponentiations modulo 1024-bit prime nungbeeed 2(lg p)3C bits operations, in our
case

2x1024C= 2 (10 JC= & 18C-bits operations for some constant

A complete cycle of the DSA application thus requiréﬂg p)3C bit operations, in our case

4x 109(: -bit operations for some constahit

6.8 MM DS

6.8.1 Key generation

One matrix modular multiplication and one matrix modular is® in the groupG need

4(Ign)? + 5(Ign)* = 9(Ign)? C-bit operations.
In the parallel computing case we have:
(Ign)? + 2(Ig n)* = 3(Ig n)? C-bit operations.
1) For 32-bitn we have the following estimate of the bit complexity of M8IRey generation:
9(32Y = 9x 2°= 9 10= 10c-bit operations.
In the parallel computing case for 32-bitve have:
3(32) = 302°= 3x 10c-hit operations.
2) For 64-bitn we have the following estimate:
9(64Y = 902° = 3612°= 36118= 3,6 1'C-bit operations.
In the parallel computing case for 64-bitve have:
3(64Y = 302°= 1212°= 12116= 1,2 11T -bit operations.

6.8.2 Signature generation

When generating a signature used four modular matrix multiljgits one modular matrix inversion and
one modular multiplication (addition is not included). In addit used the operations in the graapthere
are two modular matrix multiplications, two modular trha inversions and one modular matrix
multiplication by a scalar. Using estimates of the bitiplexity of these operations made above, we get:

(32(Igny’ + 7(Igny + (Ign)*)+ (8(Igny’ + 10(lgny¥+ 2(Ign¥ }= 60(Ign > C-bit operations.
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In the parallel computing case we get:
(8(Ign)? + 2(Igny* + (Ign)*)+ (2(lg )’ + 4(lgn)*+ (Ig n)*)= 18(lg )’ C-bit operations.
1) For 32-bitn we have the following estimate of the bit complexity of MBIBignature generation:
60BZ = 6002°= 6@10= 8 1{C -vit operations.
In the parallel computing case for 32-bitve have:
18[BZ = 1§12°= 18116= 1,8 11T -bit operations.
2) For 64-bitn we have the following estimate:
6064 = 6002 = 24 P= 240 1&= 2x4 HO-bit operations.
In the parallel computing case for 64-bitve have:
18064 = 720¥= 77118= 7,2 11C-bit operations.

6.8.3 Signature verification

Under verifying the signature used two modular matrix ipli¢ations, one modular matrix inversion in the
group G and one modular matrix multiplication by a scalar. Usisimates of the bit complexity of these
operations made above, we get:

16(Ign)* + 5(Igny + 4(IgnY = 25(Ign ¥ C-bit operations.
In the parallel computing case we get:
4(Ign)> + 2(Ign)* + (Ign)*> = 7(Ig n)* C-bit operations.

For more specific values of the bit length specify the appropriate values of the bit conifyleof the
MMDS application.

1) 32-bit length of:
25(32f = 2912°= 2% 10= 2,8 11 -bit operations;
in the parallel computing case for 32-bitve have:
7(32y = 702° = 710C -bit operations.
2) 64-bit length of:
25(64f = 2912°= 1000 2= 100 1% 1G -bit operations;
in the parallel computing case for 64-bitve have:

7(64Y = 702° = 2812°= 28118= 2,8 1 -bit operations.
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7 Conclusion

As a result, the consideration in section 5 of potemtitlcks on MMDS, use a 32-bit modulusnay be
considered secure. In case of detection of vulnerabilitiere is strengthening the protection by increasing
the bit length of the modulus. On the other hand, for a 32-bit modulusas estimates show the bit
complexity of key generation, generation and verification of sigeathese steps of MMDS are much faster
than the corresponding steps of the digital signatures usprhdatice howadays. Moreover, if applied to
parallel processing of at least 4-core processor, asfsa®@ the results of section 6, the speed of the three
steps MMDS approaching speeds of symmetric and stegarers. The complete cycle of the application of
MMDS (key generation, the generation and verification mfnatures) in this case requires only
approximately2,8x 1#C - bit operations versugx10°C -bit operations in DSA o2 x10°C -bit

operations in RSA signature.
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